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1. INTRODUCTION

This purpose of this research was to develop advanced structural integrity analysis
methods for aging aircraft structures. The primary focus of this study was to develop a
method for performing fatigue crack growth analyses under a composite (repair patch) on
a metallic structure. Also, it was envisioned that these methods would be incorporated
into the fatigue crack growth software, AFGROW, so that this promising technology can
be transitioned to U.S. Air Force Logistic Centers, U.S. Air Force contractors and other
government agencies as quickly as possible.

Fatigue cracks growing from fastener holes, or multiple fastener holes, also are common
problems found in aging aircraft. To address these problems, analytical methods (weight
functions) were developed to assist engineers in the analysis of fatigue cracks growing in
arbitrary stress fields, commonly found around cold-worked fastener holes and stop-
drilled cracks. Furthermore, an approach to evaluate multiple cracking, or multiple-site
damage (MSD), was developed as a future enhancement to the AFGROW program.

The development of enhanced damage tolerance methods are necessary to accurately
determine the inspection intervals and safety of flight of repaired, aging aircraft
structures. Current methods used to evaluate the structural integrity of repaired structures
include time consuming (and limited) finite element analyses and/or static strength design
criteria. While these methods are often adequate for estimating the equivalent stiffness
and state of stress of a repaired structure, they do not include load interaction effects,
cyclic debonding, or give an adequate estimation of the remaining life (or inspection
intervals) of a repaired structure. The primary questions regarding bonded composite
repair patches based on comments from ASIP managers at USAF Air Logistics Centers
[1] are: (1) is the composite repair viable?; if so, (2) how long can I keep the aircraft
flying with this repair?, and (3) how often should I inspect the repair? The statements are
not necessarily made to underestimate the importance of finding qualified personnel to
perform repairs and trained personnel with proven NDE methods to evaluate the
structural integrity of the patch. In most cases, the decision to repair or replace structural
components must be made quickly so that the aircraft may be returned to service as soon
as possible. This requirement precludes the use of time consuming, detailed finite
element analyses or rigorous testing programs.

Presently, engineers at the ALCs do not have integrated analysis tools to assist in the
design of repairs and subsequently perform Damage Tolerance Analyses (DTA) to assign
inspection intervals to repaired structures [1]. Therefore, it is important that advanced
analysis methods be developed and implemented to assess the structural integrity of
repairs being performed at various US Air Force Air Logistic Centers (ALCs). It is also
important that analysis methods are user friendly, accurate, fast, economical, upgradable,
well documented, and be supported by knowledgeable USAF personnel.




This research does not intend to discourage the use of finite element methods, static
strength analysis methods or rigorous testing programs to accurately characterize the
structural integrity of a patched, repaired structure. What this research wants to
emphasize is that composite-patched repaired structures should be analyzed with methods
capable of characterizing the dynamic aspects of a crack growing under a composite
patch in a repaired structure. The USAF Aircraft Structural Integrity Program (MIL-
STD-1530A) calls for aircraft to meet the damage tolerance criteria found in MIL-A-
83444 (Airplane Damage Tolerance Requirements). It is the belief of the author that the
design of repairs made to aging aircraft should also be evaluated under damage tolerance
requirements to whatever extent possible.

With regard to composite repaired structures, the potential of repairing cracked metallic
structures with composite patches for cost reduction and improved structural efficiency is
becoming evident from the studies of various investigations [2-9]. The in-service
application of the repair concept are found in the repair of C-141weep hole cracks, C-5
fuselage skin, F-16 fuel access hole in lower wing skin and T-38 lower wing skin at ‘D’
panel. In the majority of cases where damage metallic structures have been repaired with
composite patches, conventional mechanically-fastened repairs could not be used due to
either non-availability of space to drill holes or detrimental effect of these holes on the
structural integrity of the repaired structure. The composite patch repair concept offers an
excellent potential to repair structures which cannot be repaired with conventional
methods and thereby reduce the operational cost of in-service fleet.

This repair process essentially involves bonding of fiber-reinforced composite material
over the cracked metallic material, thereby reducing the stress intensity of the crack. This
results in a slowing of crack growth in cracked metal parts or even complete retardation
in certain cases [4]. The use of composite patch repair has several advantages over
conventional repair, namely:

1. More efficient load transfer from the cracked part to the repair patch, resulting
in more reduction in stress intensity factors at crack tips as compared to
conventional mechanically fastened repairs.

2. No additional stress concentrations due to drilling of holes for fasteners as in
the case of conventional repairs.

3. Good durability under cyclic loading.
4. High directional stiffness of a patch allows use of thin patches.

5. Can be used to repair curved surfaces and complex geometries.

In order to assure the flight safety of structures repaired with composite patches, it is
necessary to develop analysis methods to predict the life of repaired structures. Also, the




analysis techniques should be easily used by the engineers involved in designing repairs
without causing any delay in aircraft down time.

This report has been broken down into three sections; development of composite repair
design criteria, development of damage tolerance methods for repaired structures, and
development of weight functions and approach to MSD. The development of composite
repair design criteria is described in Section 2 and development of damage tolerance
methods for composite patch repaired structures is described in Section 3. The
development of weight functions is described in Section 4 and approach to MSD is

reported in Section 3.




2. REPAIR DESIGN CONSIDERATIONS

A number of factors need to be considered in designing composite patch repairs for
metallic structures. From the point of a structural designer the following factors need to
be considered:

1) Repair patch material and thickness

2) Repair patch ply orientation and stacking sequence

3) Patch configuration

4) Adhesive material and thickness

5) Adhesive disbonding

6) Effect of moisture

7) Metallic material thickness

8) Effect of thermal stresses

Consideration should be given to the location of the repair when selecting the patch
material, configuration, taper. External aircraft surfaces, particularly in areas critical to
aerodynamic smoothness requirements (such as wing leading edges) require coordination
with the proper authority for changes to external aerodynamic surfaces. A repair to a
substructure will be dictated by the proximity of adjacent structural components. Some
of the important factors influencing a composite patch repair will be discussed in the
following sections.

2.1. Repair Patch Material & Thickness

A number of composite materials are available for bonded repair applications; however,
the most commonly used materials are boron, graphite, and sometimes GLARE. Each of
these materials has an application in composite patch repair depending on the metallic
material thickness, type of load spectrum, and the stress level in the spectrum. For lightly
loaded and thin structures such as in fuselage structures GLARE may be suitable. It has
the advantage that it is relatively cheap compared to boron and graphite. Also, from the
design point of view GLARE has nearly the same coefficient of expansion of the
aluminum base material and produces no residual compressive stresses during the in-
service operational environment of the aircraft. This can be an advantage in certain cases.
However, for highly loaded structures and structures experiencing severe spectrum
loading it is desirable to use materials such as boron or graphite. Both of these materials
provide greater stiffness when compared to GLARE. Boron patches are generally thinner
than graphite because boron has a modulus which is about 50% higher than that of
graphite. However, the cost of Boron is about 20 times that of graphite.

It is desirable to keep patch thickness to a minimum, as thicker patches will result in out-
of-plane bending when the repair patch is applied to one side only. The out-of-plane
bending causes additional tensile stresses in the metal sheet and increases the stress
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intensity factors, thereby reducing the effectiveness of the patch. In most cases, there is
an optimum patch thickness which reduces the state of stress at the damage in the metal.
Increasing the thickness beyond the optimum can result in significant out-of-plane
bending and reduce the effectiveness of the patch.

In Reference 10, guidelines have been provided for repair patch thickness for two sided
and one sided repairs shown in Figure 1. In the reference the repair patch thickness t, is
recommended as follows:

For a two sided repair patch (Figure 1a), thickness t, of patch on each side is given by;

(E.t,/2E, )<t, < (1.2E 1, /2E,)

For a one sided repair patch (Figure 1b), thickness t, of the patch is given by:

(Et,/E,)<t, <(1.2Et,/E,)

The patch thickness is intended to restore original stiffness over the defect. It is desirable
to provide a patch thickness to restore original stiffness of the structure being repaired.”
However, a stiffness of up to 20% higher than that of base metal is considered acceptable.




2.2,

It is desirable to use highly orthotropic patches having a high stiffness in the direction
normal to the crack, but with some fibers in directions at 45° and 90° to the primary
direction. This configuration has been found to prevent matrix cracking under bi-axial
loading and in-plane shear loads which exist for typical applications. A good design
practice is to use about 70% 0°, plies 20% 45°%-45° plies and 10% 90° plies. A typical
repair patch is shown in Figure 2. When graphite/epoxy is used as a repair material, a
barrier ply of ‘S’ glass is used between aluminum substrate and graphite patch to prevent
galvanic corrosion. A wrap of 181 woven glass is sometimes applied on the patch surface
as shown in Figure 2 to provide a smooth ply transition on exterior surface repairs. This
has additional advantage that during any in-service damage woven glass is damaged and
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Figure 1. Repair Configurations

Repair Patch Ply Orientations and Stacking Sequence

the repair may still be intact.
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Figure 2. Typical Ply Orientations

The stacking sequence in a repair patch is also an important consideration in repair patch
design. It is desirable to put +/-45 degree plies on the outside surface not in contact with
damage area and zero degree plies within the patch laminate. This has two advantages; 1)
during any in-service impact damage +/-45 degree plies will get damaged and the
structural integrity of the patch is not significantly reduced, and 2) the presence of +/- 45
degree plies reduces the inter-laminar stresses at the edges of the patch and thereby
reduces the tendency of the patch to delaminate at the edges during in-service cyclic
environment. For thin patches, the stacking sequence may not have any significant
influence on load transfer to the patch. While this may often be true for thin patches, it
may not apply to thick patches, therefore, it is desirable to place 0 degree plies closer to
the metal surface for thick repair patches. However, consideration must also be given to
maintaining balanced laminate symmetry to avoid warpage in the pre-cure of the patch.

2.3. Repair Patch Configuration

The repair patch configuration may vary and is primarily dependent on the structure’s
repair location and loading direction. Composite patch repairs to the external skin are a
function of geometry and may take on the appearance of a circular or elliptical shape with
circumferentially tapered edges (Figure 3), and are dictated by the aerodynamic
smoothness criteria.  Where geometry dictates, the prestaging of the patch is
recommended.
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Figure 3. External Skin Repair

Repairs made to substructural components, such as spar caps and rib flanges with
cracking at fastener hole locations, may require a staged or precured patch as shown in
Figure 4. The ends of the patch are tapered for smooth load introduction and to reduce
the peel stresses at the ends.

To efficiently transition the load into the repair patch, plies should be stepped at 0.1 inch
for every 0.010 inch thick stacking of plies. This taper rate applies to both boron/epoxy
and graphite/epoxy patches.
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Figure 4. Substructure Repair




2.4. Adhesive Material & Thickness

Room temperature cure adhesives are not considered suitable due to service temperature
requirements of 180°F in major aircraft repair applications and long-term durability
needed for repairs. Room temperature cure adhesives are paste adhesives and generally
do not result in uniform bond line thickness in the repair, thus, affecting the load transfer
to composite patch. Hence, high temperature cure adhesives are preferred. A 350°F cure
film adhesive is not considered desirable as the curing at such a high temperature is likely
to cause undesirably high thermal stresses. Also, an aluminum structure exposed to
350°F temperature will experience a degradation in mechanical properties. A 250°F cure
temperature film adhesive is considered suitable for the composite patch repairs of
aluminum structure.

Ductile adhesives such as FM-73 are preferred over brittle adhesives such as FM-400 due
to the greater tendency of the brittle adhesives to disbond around the damage area during
flight loading. This adhesive disbonding reduces the load transfer effectiveness to the
patch.

Adhesive thickness should be kept as small as possible so in order to develop full bond
strength. A thick adhesive bondline causes less load transfer to the repair patch and
increases the stress intensity factors in the cracked metallic structure and crack growth
rate. Successful bonds are achieved using one ply of 0.01-inch thick adhesive. First, the
adhesive is allowed to thaw to room temperature after removing it from the refrigerator.
Next, the adhesive is cut to the size of the patch and installed on the base material bond
surface in the prescribed location. Lastly, the appropriate procedure for applying pressure
and following the recommended cure cycle must be followed to achieve the desired bond-
line thickness. A desirable bond-line thickness ranges from 0.004-inches to 0.007-inches.

2.5. Adhesive Disbonding

Disbonding in the adhesive layer can occur during the fabrication of the repair patch,
during the in-service spectrum loading as the damage in the metallic propagates due to
fatigue, or due to in-service impact damage. The overall effect of the adhesive
disbonding is to reduce the load transfer to the repair patch and reduce the effectiveness
of the patch. The disbonding in the adhesive layer due to in-service fatigue loading is
generally elliptical in shape for through the thickness cracks and the leading edge of the
disbond generally coincides with the leading edge of the crack. The ratio of major to
minor axis of the disbond depends on the type of adhesive being used. The effect of
disbonding, caused by crack propagation due to in-service loads, should be taken into
consideration during the design process. However, if the disbonding occurs due to in-
service impact damage or fabrication process, it’s effect on structural integrity will
depend on the location of the disbond with respect to the crack plane.




2.6. Effect of Moisture

Composite materials have the propensity to absorb moisture from the environment during
in-service usage. The presence of moisture in the repair can influence the damage growth
in the repaired structure. The effect of moisture must be taken into consideration in
designing composite patch repair and life prediction. The maximum moisture content in
composite patch under typical environment is generally about 1%. The presence of
moisture can cause increase in crack growth rate due to two reasons: 1) The presence of
moisture increases crack growth rate in the metal compared to room temperature
environment, and 2) the presence of moisture affects the load transfer to the patch. The
repair patch design should be verified by testing with repair patches that are moisture
conditioned to represent realistic environments.

2.7. Effect of Metallic Material Thickness

The effectiveness of composite patch repair concept depends on the thickness of the
metallic structure being repaired. In thin metallic structures (thickness less than 0.12
inch) repaired with composite patches on one face or both the faces the crack growth in
the metal during subsequent flight loads is fairly uniform. However, in thick metallic
structures (thickness greater than 0.12 inch) repaired with composite patch on one side
only, the crack growth is not uniform through the thickness. Fatigue crack growth is
retarded on the repair patch side as compared to the side with no repair patch. The non-
uniform crack growth is due to the out-of-plane bending and the load transfer to the patch
on the repaired side of the structure.

In thick metallic structures with repair patches on both the faces, the crack growth may
not be uniform through the thickness. The crack gets retarded more on the surface than in
the central portion of the specimen. This is because there is more load transfer into the
patch in the surface region as compared to the central portion of the plate. In such cases
the crack may exhibit tunneling behavior. The effect of the nonuniform crack growth
should be taken into consideration when designing composite patch repairs for thick
structures. The existing analytical techniques do not account for this effect and need to
be modified before yielding realistic results.
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2.8. Effect of Thermal Stresses

The operating temperatures of typical transport and fighter/trainer aircraft generally do
not cause significant thermal stresses to warrant thermal stress analyses. However, the
mismatch in thermal expansion properties between a composite patch and repaired
metallic structure can cause residual thermal stresses, which may accelerate crack growth
in aluminum structure. The residual stresses are greater in a graphite repair than a boron
repair because of a larger thermal mismatch between graphite and aluminum (as
compared to aluminum and boron). These thermal stresses are produced; (1) during the
bonding of composite repair patches to aluminum and (2) during in-service operation.
The residual stresses produced in aluminum during the bonding process are compressive
and hence have a beneficial effect. This effect is generally neglected. In operating
environments, at temperatures above room temperature, the aluminum is subjected to
compressive stresses and the “closure” effect is beneficial. However, in operating
temperatures below room temperature, the aluminum is subjected to tensile stresses,
which will reduce the crack closure effect and accelerate damage growth. Therefore, if an
aircraft is operating at -65°F for long durations, damage growth will be accelerated and
should be taken into consideration.

In the mathematical formulation of the problem, AT is the temperature difference that
produces thermal stresses as outlined in Section 3.4 of the analysis. The temperature
difference can be defined by:

AT = Tref - Top
where:

T~ “Effective” temperature of repair system
T,;= Temperature of current operating environment

T, is a temperature necessary to quantify the thermal residual stresses inherent in the
metal due to the composite bonding process. The choice of reference temperature 1s
highly subjective (difficult to measure experimentally) and must be selected with caution.
The estimation of T, is often debated within the repair community and is often used as a
“correction factor” used to fit test results. For example, one analyst may recommend
using T, = 250°F (a typical cure temperature for film adhesives used in composite
repairs), and estimate the T, at room temperature to be approximately, 250-70°F= 180°F.
A second analyst may estimate that the actual temperature at which the adhesive stops
flowing and “locks in” the residual stresses to be approximately 120°F, yielding a T, of
120-70°F= 50°F. At present, there is no definitive answer to this question. The

estimation of T, is discussed more detail in the following paragraphs.

In summary, temperature differences due to either the composite bonding process and/or
in-service loading can produce tensile or compressive stresses depending on the situation.
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To illustrate the thermal effects of a composite patch on a metallic structure, the two
cases specified are outlined below:

CASE 1: Effect of Thermal Stresses due to Composite Repair Bonding Process

Thermal stresses are produced during the bonding process when the coefficients of
expansion of two materials are different. If boron or graphite is used as repair materials,
thermal stresses will be produced during bonding process. All of the repairs on test
specimens have shown that the test specimens are bent with repair patch on the outside
and metal on inside. This indicates that the metal is under compression and the patch is
under tension. Therefore, the stresses produced in metal are compressive and will tend to
reduce stress intensity factor to some degree. This effect is generally neglected.

CASE 2: Effect of Thermal Stresses due to In-Service Loading

This case considers a composite patch repair that has already been performed on a
structure and the structure is subjected to in-service temperature changes. If a structure is
subjected to a operating temperature T, which is higher than T, then metallic structure
will try to expand more than the composite repair, and will be restrained by the composite
repair as shown in Figure 5. This will cause compressive stresses in the metallic structure
and tensile stresses in the repair patch as shown in Figure 5. Thus, the stress intensity
factor due to thermal stresses (caused by a temperature increase) should be subtracted
from the stress intensity factor due to mechanical loading.

Metal Expansion
Equilibrium Position
Metallic Material\

- |

{
Composite — ] ]
|<-— L b\\ Tension in Composite

Composite Expansion

4<— Compression in Metal

Yy
4

Figure 5. Repaired Structure Subjected to Temperature Increase

In the case where a structure is subjected to temperatures lower than the reference
temperature, T, (e.g. an aircraft flying at -65°F), the metallic material will tend to
contract more than the repair patch (Figure 6) but will be restrained by the composite
patch. This will cause tensile stresses in metal and compressive stresses in the composite
as shown in Figure 6. Thus, the stress intensity factors due to temperature decrease
should be added to the stress intensity factors due to mechanical loading.
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Figure 6. Repaired Structure Subjected to Temperature Decrease

Tt should be noted that the increase or decrease in stress intensity factors, due to thermal
stresses, may not occur at the same time as the maximum stress in the spectrum. For
example, in a fighter aircraft, the maximum stress occurs during combat and the
temperature is not likely to be -65°F. When this temperature occurs the maximum stress
in the spectrum is likely to be corresponding to 1g or 2g load, which is likely to be much
less than design limit load or maximum spectrum load. Therefore, the superposition of
the thermal and mechanical stress intensity factors must be carefully considered in order
to obtain accurate stress intensity factors used in life prediction analyses.

In conclusion, these idealized models are not always representative of the situation
encountered in real structures. In real aircraft structure, the deformations producing
thermal stresses are local to the vicinity of the repair. Therefore, the influence of the
substructure’s constraint will depend on the proximity of the substructure, relative
stiffness of the substructure, type of fastening, etc. Within the present scope of this
program, it was impossible to develop and verify the analytical techniques used to
determine the effect of these constraints.
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3. METHOD TO ANALYZE CRACKED METALLIC STRUCTURES
REPAIRED WITH COMPOSITE PATCHES

The analysis of a cracked metallic sheet with a bonded repair patch has been studied by
various investigators [11-21]. In References 17-19, finite element techniques have been
developed to analyze a cracked metallic sheet with a bonded composite repair patch. The
finite element method is not a very convenient tool for use by engineers who are not
experts in modeling and requires special training. Therefore, there is a need to develop
simple methods to analyze cracked metallic structures repaired with composite patches.
These techniques should be easy to use and not require expert knowledge.

In the following sections, a mathematical method of analysis is described. The details of
the approach are discussed in the following paragraphs.

3.1. Formulation of the Problem

The problem of an adhesively bonded composite repair patch to a cracked metallic sheet
is shown in Figure 7. A fatigue crack of length 2a is assumed in the metallic sheet.
During fatigue cycling, a debond may develop in the adhesive layer. The debond is
assumed to be elliptical in shape, with major axis along the crack direction and the
leading edge of the debond coinciding with the crack tip.
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Figure 7. Cracked Metal Sheet with Composite Repair Patch

The analysis of the cracked metallic structure repaired with a composite patch, shown in
Figure 7, is based on the following assumptions:

1.

Composite repair patch is considered as an orthotropic material with principal
directions along the crack plane and at right angles.

The thickness of the metallic sheet and composite patch are small compared to the in-
plane dimensions so the structure may be considered under plane stress.

The variation of the stress through the thickness of the metal sheet and composite
patch is neglected.

Metal sheet, composite patch, and adhesive layer are linearly elastic materials.

The adhesive thickness is small compared to the metal and patch thickness so that the
adhesive may be treated as a shear spring.

The surface shear transmitted through the adhesive acts as a body force.

The dimensions of the plate and patch are sufficiently large so that infinite plate
solutions for Green’s functions may be used.
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For the purpose of analysis, the structure in Figure 7 can be represented by the structure
shown in Figure 8; where the structure in Figure 8a has no crack and the structure in
Figure 8b has a crack with loading applied to the crack surface. The solution to the
problem of Figure 7 is given by the perturbation problem of Figure 8b, as the structure of
Figure 8a has no crack and hence no stress intensity factor.

£ A

Adhesive
- — Patch

Y, / y 1'%

A .
~Adhesive

Patch

2 EEEE R B

(a) Bonded Sheet with No Crack (b) Perturbation Problem

Figure 8. Superposition Technique for Cracked Sheet with Patch

In the perturbation problem of Figure 8b, let u,, v, and u,, v, be the x, and y components
of the in-plane displacements in metal sheet and composite patch, respectively,. The shear
stresses 1, and 1, are the components of shear stresses in the adhesive. The continuity
conditions in the displacements of sheet and patch give:

ul _uZ =(ha/pa) Tx
V=V, = (ha/ua) Ty (1)

where, 1, is the shear modulus of adhesive and h, is adhesive thickness.

The perturbation problem of Figure 8b may be considered as a metallic sheet with body
forces and crack surface loading as shown in Figure 9a and composite patch with body
forces as shown in Figure 9b. The body forces acting on the cracked sheet are X, and Y,
at z, (%, ¥,) in x and y directions, respectively. The body forces acting in the composite
patch are X,, Y, at z, (x,, y,) acting in x and y directions, respectively.
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Figure 9. Loading on Metal Sheet and Composite Patch in Perturbation Problem

The body forces between the sheet and composite patch are transferred through the
adhesive shear stresses. The relationship between the body forces and shear stresses is
given by:

X = -(Tx/hl): Y, = _(ty/hl)
X, = _(Tx /hz): Y, = —(Ty/h2) @

The stresses and displacements in terms of complex functions ¢ and y are given by
Reference 22:

c,t0, = 2[¢(z)+ @] (3a)

5, - o, +2it, =2z -2)0'2)- 0(2) + w(2)] (3b)

2u(u + iv)= K]q)(z) - ?w(Z) dz - (z - E)@ (3c)
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3.1.1. Displacements in Orthotropic Composite Repair Patches

In the perturbation problem in Figure 9b, the body forces X, and Y, are the only forces
acting on the patch. The stresses and displacements in the patch can be obtained from the
solution of the problem of concentrated body forces acting at any arbitrary location z,.
This solution is used as Green’s function and integrated over the bonding region ‘D’ to
obtain displacements and stresses due to forces acting in the entire bonded region. The
Kolosov-Muskhelishvili functions for the orthotropic composite under concentrated
loads, X, and Y, acting z,, are given by [23]:

0, (Zl) = (Can +CpY, )log(zl - 51)

X2 (Zz) = (C21X2 + C22Y2)10g(22 - iz) )
where,

Z, =X +8,Y, E =Xo +5, Y05 k=1,2)

Z=X+1y, Z, =X, +1Y, (5)

C,y = (/2ni)fs, +5: +51 + 18,5 (v, E, /E [, =5, )1 =51 J1=52/5, )]

C,, = (1/2ni) :sz S+ 8IS, +8182 +V, ]/[(sl -s, )(s1 - §1X1 —52/s, )]

Cyy = (1/2m1) s, + 51 +52 + 5,535 (v, B, /B, /s, =5, s, =2 J1=51/5, |

C,, =(1/2m ) :sl S1 + 528, + 5281 + vx]/[(s2 -, )(s2 -2 Xl —s1/s, )] 6)

In Equation (6) s, and s, are roots of
s'+(E,/G,, ~2v,)s* +E,/E, =0 @)
for which Im(s,) > 0.

The stresses and displacements in the plate may be expressed in terms of ¢, and 7,.
Assuming that the body forces X, and Y, are continuous functions of zy(x,,y,) defined in
bonded region ‘D’, the displacements at a point in the composite may be written as:

u, (X>Y) = “‘D [Kn (X,y; Xo>YO)Xz (XO’y0)+ Ky (X,y; XY o )Yz (XO’yO )] dx,dy,

Vs (X:Y) = ”;) [Kzl (Xay; Xo5Yo0 )Xz (Xo Yo ) +K,, (X,y; X0 =YO)Y2 (Xo Yo )] dx,dy, ®)
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where kernels K;; (i,) = 1,2) are given by the Green’s functions (4).

3.1.2. Displacements in Cracked Plate

The displacements in the cracked plate consist of two parts, one due to uniformly applied
stress on the crack surface and the other due to the body forces acting on the cracked
plate. The displacements due to uniform applied stress on the crack surface are given by:

(z2 -a’ )1/2 z/(z2 - az)l/2 ]+ (1- K)X}/4].l =of,(xy) (92)
(z2 -a’ )1/2 —2yRe z/(z2 -a’ )1/2]+ (1- K)y%p =of,(xy) (9b)

u,, (xy)= G{(K—I)Re ~2yIm

v“(x,y)= 0{(1( +1)Im

where,

v, is Poisson Ratio of plate material
u is the shear modulus of plate material

K=(3_V1)/(1+V1)

The displacements uy, and vy, in the cracked plate due to body forces are given in
Reference 21. These displacements are given by:

2u(u,, +v,,)= S{—K[log(z —zo)+log(2—20 )]+ K[Gl (z.2,)+6, (E,Eo) 2 —[81 (E,zo)-i— k%6, (2,20)1/2
+ SK - 1)[1(92 (f) —_62 (2)]/2 + (z ~2Zo bs (Z’f")/ (E -z, )} i
+S[(z—zo)/(z—20)—l +%6,(z,2,) -6, (z,zo)— 0,(z.2,)+x8, (Z,Zo)]
+Rigid Body Disgdacement (10)

where,
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S=(X, +Y,)/[2n(l +«)]

S=(X, - Y,)/r(1+x)]

6,(z.2,)= IOg[ZZo —a?+ (g2 -2 (2 _az)‘/z]
92(z)=log[z+( 2 2)1/2]

0u(e.20) =0 -2 2ole- 2+ 2 o) e -2 fo? -2
0 (z zo) [z z/ZZ zo)][l z . )/2}

95(z,zo)=64(z,20 ~z-z Jzo)/[Zz -a’ }
I(z)=7t(z2 -—az)l/2 —z]

1) = el -2 -1] (11)
Assuming, the body forces X, and Y, are continuous functions of (X,,y,) defined in the

bonded region ‘D’, and using equations 10 and 11 as the Green’s functions, the
displacements in the cracked plate due to body forces may be written as:

ulz(X=Y)= _UD [hu(xzy; XOYO)Xl (XO,y0)+ h), (x,y; xoyo)Y (X )] dx,dy,
VIZ(X7y)= IL[hzl(Xay; XoYo)Xl(Xo,YO)"'hzz(X:y’ OyO) ( )]dX dy, (12)

The total displacement in the cracked plate may be written as:
uI(X>Y)=u11 T U, Vl(X=Y)=V11 TV (13)

3.1.3. Integral Equations for 7, & 1,

The 7, and t, are the adhesive shear stresses in the x and y directions, respectively. The
relationship between the body forces and shear stresses is given by Equation 2. Using
displacements u;, u, and v,, v, in Equation 1 gives the following system of integral
equations for the unknown shear stresses t, and t,:

(ha /1, )Tx (X:Y)"' ”; [kn (X,y; X9 >YO)+ Ty (Xo,yo )+ ki, (X,y; X9 >Y(>)+ Ty (XO,yO )] dx,dy, =cf] (x,y)

(ha /1, )Ty (X,y)+ j_L [k21 (X>y; Xo >YO)+ Ty (Xo,YO )+ Ky, (X,y; Xo:¥o ) +T, (XO,yO )] dx,dy, =cf, (X>Y)
(14)
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The functions f; and £, are given by Equation (9) and,

ky; =Hn/h1+K11/h2 ki, =le/h1 +K12/h2

ky = Hzl/hl + K, /b, ky, = H,, /b + K, /h, (15)
Kernels K; (i,j = 1,2) which have logarithmic singularities are known and are square

integrable in region ‘D’.

3.1.4. Stress Intensity Factors

The stress intensity factors in plane stress problems may be expressed in terms of
Kolosov Muskhelishvili function ¢(z) as follows [24]:

k, — k=, lim, [2(x - ) o, (.0) 1, (.0)]
= lim, 2[2(z - 2)]"* ¢(z) (16)
In the present problem, the shear component of the stress intensity factor is zero due to
the symmetry in loading and geometry and only cleavage component k, is present. The

cleavage component is obtained by adding the effects of crack surface loading p, and the
body forces X, and Y. The stress intensity factor k, is given by:

k = 0'(21)]/2 + HD [hl (Xo =YO) Xl(X0>YO)+ h, (Xo aYO) Y, (Xo Yo )] dx,dy, (17)

where, h;(X,Y,) and hy(x,,y,) are the cleavage components of the stress intensity factor
due to the concentrated body forces X, and Y;, respectively. The stress intensity factors
are given by:

K, —ik, = (a)?(-Sle-+1(z0)] /(- 20)+ 18]+ 1 ()] /(2 - 2)~Sleo ~ )

[+ 1)) -2 F +7 o)/ (a-2,) (18)

hy(X,,¥,) and hy(Xpy,) are the coefficients of X, and Y, respectively in real part of
Equation (18).
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3.2.  Solution of Integral Equations

The integral equations given by Equation (14) are the Fredholm type and may be solved
by collocation. The region ‘D’ is divided into smaller cells and unknown shear stresses T,
and t, are assumed to be constant in each cell. In the integral equations the integral is
replaced by summation and using collocation a 2N X 2N system of equations are
obtained. The equations are given by:

N N
(ha /u, ) Ty (Xi 7Yj)+ ZZ [kll (Xi 5Y 55 XopaY 0q )Tx (X0p>Y0q )+ k, (Xi 5Y 55 Xop ’yOq)Ty (Xop>YOq )] ALA,

o) 19)
N N
(ha /p'a ) T"y(xi > yj)+ ZZ; [k21 (Xi ’yj; XOp’YOq )Tx (XOp ’y0q)+ k22 (Xi9Yj; XOp 9YOq )Ty (XOp 9YOq )] Apryq
p=1 g=
= Gfl(xi’yj) (19b)
i=1...N, j=1L...N

The kernels in Equation (19) have logarithmic singularities, hence the singular part of the
kernels is evaluated separately in the closed form. In the actual integration a telescopic
grid is used. A typical grid used in integration is shown in Figure 10, where only a quarter
of the integration region is shown because of symmetry. The grid size is kept small
above the crack plane for a distance of about half-crack length ‘a’, as the shear stresses
are high in this region. The grid size is increased as the distance from the crack increases.
Theoretically the integration region is infinite, however, in the perturbation problem the
shear stresses in the adhesive decrease rapidly away from the crack plane. Hence, the
integration region is kept finite as shown in Figure 10. The integration region is
determined so that the stress intensity factors are not significantly affected. The
convergence of the solution depends on the crack length and elastic properties of an
adhesive, cracked sheet, and composite patch.
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Figure 10. Grid Used in Numerical Integration (Due to Symmetry Only 1/4 of Panel Shown)

3.3. Effect of Bending

The analysis of a cracked sheet repaired with a composite patch (in Section 3.1) is for
extension loading and it is assumed that the patch or sheet has no bending stiffness. It is
applicable to cases where the repair patches are applied to both the surfaces of the
cracked sheet as shown in Figure 11a. This type of repair is not always feasible, for in
the majority of cases the access for repair is available on one side only, and therefore the
repair patch may be applied on one surface only (Figure 11b). The presence of a patch on
one side only will produce out-of-plane bending at the crack plane. This bending will
produce tensile stresses in the sheet and compressive stresses in the repair patch. The
tensile stresses due to bending in the sheet will produce stress intensity factors in addition
to those produced by the applied membrane stress, . The stress intensity factors due to
bending should be added to those produced by membrane stresses. A simple method of
calculating stress intensity factors due to bending [11-12], is discussed in the following
paragraphs for the composite repair patch geometry shown in Figure 1 1b.
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Figure 11. Repair Patch Configurations

In a cracked sheet with a central crack of 2a and far field applied stress of o, the load
released due to the presence of the crack at the crack plane is (2ah,)c (area x stress). This
load is entirely taken by the stress singularities produced ahead of the crack tips. In a
cracked sheet repaired with a composite patch shown in Figure 11b, the same load
released due to the presence of a crack (2ah,c) at the crack plane is partly taken by the
stress singularities ahead of the crack tips, as in the case of a single cracked sheet, and the
remainder of the load is transferred to the repair patch through the adhesive. The load
transferred to the patch produces bending. Let the load transmitted to the patch be 2ah;c,
(area x stress) where o, is equivalent stress transferred to the patch.

Assuming the thickness of the adhesive to be small compared to plate thickness, the
moment produced by the load transfer between the cracked sheet and patch is given by:

M = 2ah,c (b, +1,)/2] (20)

where (h;, + h,)/2 is the distance between the centerline of the metal sheet and repair
patch.

or

Mzahl(hl"'hz)cz 21)
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Assuming that the bending is resisted by the plate width equal to the patch width W, the
maximum bending stress in the layer is given by:

Cb = Mymax /I (22)

where y, . is the distance of the outer sheet edge from neutral axis and I is the equivalent
moment of inertia of the section. For computing the moment of inertia and ¥, the
thickness of the adhesive may be neglected and the section of the patch resisting bending
moment (Figure 10a) may be represented by that shown in Figure 12b. For computing
the moment of inertia and y,,, the equivalent section is shown in Figure 12¢, where it is
assumed that E, is greater than E, and the section is uncracked.

Composite Patch (E, Ey, Vx, Gxy) Composite Patch (Ey, Ey, Vx, Gxy)
hz 2
‘ W —> ‘ W —>
1B S 1
2] —— h [ T
T Adhesive Cracked Sheet (Ey, v1) T Cracked Sheet (E;, v1)
(a) Section of Cracked Sheet w/Patch (b) Idealized Section for Bending Analysis

Equivalent Section of Composite Patch (Thickness hy, Ey is Modulus in Loading Direction)
N /Neutral Axis

&

~—— WE/E
Ymax

Cracked Metal Sheet - v’
(Thickness h,) < W »

(c) Equivalent Section for Bending Stress Analysis

|

é Figure 12. Equivalent Section for Bending Stress Analysis
1

| Substituting Equation (22) in (21) gives:

cb = [ahl(hl + h2)GtYmax ]/I (23)

3.3.1. Load Transfer Factor

The load transfer factor, Ly, is defined as the ratio of the load transferred (to the patch) to
the load released due to the presence of a crack.

L= (Zahlct)/(zahlc)= c /o (24)
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Substituting Equation (24) in (23) gives:

Op = [ahl (hl + hz) LG ¥ ]/I
c,/c = [ahl (h1 + hz) Lt Ve ]/I (25)
= BC, Bending Correction Factor

Therefore the effective stress used in computing the stress intensity factors is increased
by an amount G,

3.3.2. Load Transfer Factor Computation

In a cracked structure with no repair patch the stress intensity factor may be written as:

K, = o(ra)’*f(a/W) (26a)
where, a is half crack length and f(a/W) is finite width correction.

K, is the stress intensity factor in the cracked structure with repair patch and applied
stress of . The equivalent stress o, acting on a sheet with no repair patch and giving
stress intensity factor of K, is given by:

K, =oc,(na)"f(a/W) (26b)

Using Equation (26), K, may be expressed as:

K, =0,K,/o (26¢)
or
o, =K,0/K, 27

The stress transferred to the repair patch is the difference between the remotely applied
stress in the repaired structure and the uniform in-plane stress that produces the same
stress intensity factor in a single sheet as in the repaired structure. The stress transferred,
G, may be written as:

=0-0 (28)
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Using Equation (27),

o, =c—-K,0/K,
The load transfer factor is given as:
szct/c=l_Ka/Ks (29)

K, is the stress intensity factor in the adhesively bonded structure obtained from
mathematical or finite element analysis. K is the stress intensity factor in a single layer
structure having the same crack length as the repaired structure and can be obtained from
any handbook on stress intensity factors. Substituting this value of load transfer factor in
equation (25) gives the bending correction factor, BC:

BC:Gb/Gz[ahl(hl +h2X1~Ka/Ks)ymax]/I (30)

The moment of inertia I and y,,, are obtained for the equivalent section shown in Figure
12¢. In the equivalent section shown in the figure, E, is the modulus of the repair patch
in the loading direction.

3.4. Effect of Thermal Stresses

In a cracked metallic structure repaired with composite patches, the coefficients of linear
expansion of the cracked metallic sheet and composite repair patch are different, and this
difference in the coefficients of expansion gives rise to thermal stresses. These thermal
stresses may be due to the residual stresses produced during the curing process or due to
the in-service environment experienced by the repair. The fabrication of the panels with
graphite or boron repairs have shown that residual stresses produced by fabrication
processes are generally compressive, have beneficial effects on crack growth, and are
generally neglected. However, the residual stresses produced by in-service change of
temperature may produce tensile or compressive stresses. In general, an increase in in-
service temperature compared to room temperature will produce compressive stresses and
hence a reduction in stress intensity factors. While a reduction in in-service temperature
will produce tensile stresses and an increase in stress intensity factors, it may be noted
that no residual stresses are produced if the repair material is GLARE as the coefficients
of expansion of aluminum and GLARE are about the same.

A simplified thermal stress analysis of a metallic structure bonded to composite was
presented in Reference 25. This stress analysis was used in the present work to compute
stress intensity factors due to thermal stresses. Consider the bonded structure shown in
Figure 11b. Let,
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o, = Coefficient of expansion of metallic material

a,, = Coefficient of expansion of composite repair patch in loading direction
AT = Temperature difference producing thermal stresses (T,.+T,,)

L = Dimension of the patch in loading direction at right angles to crack plane
E, = Modulus of elasticity of metallic material

E, = Modulus of elasticity of composite material in loading direction

The thermal stresses are computed as follows:

Expansion of metallic material = o, T(L/2)
Expansion of repair patch = O'yT(L/ 2)
Differential deformation producing thermal stresses = oclT(L/ 2) - ocyT(L/ 2)
= (o, - 0, )AT(L/2) (31)

Strain produced by thermal stresses = (ocI -, )AT(L/ 2)= (oc1 -, )AT (32)

Residual stress in metallic sheet due to thermal mismatch is given by,

E, (o, - o, )AT (33)

This far field stress is used to compute stress intensity factors in the structure with a
repair patch. It may be noted that the thermal stress analysis, discussed here, is
approximate and does not account for two factors namely; 1) effect of adhesive
deformation in relieving strain and reducing the effect of thermal mismatch, and 2) the
effect of relative differential expansion between composite and metal at right angles to
the loading direction along the crack plane.

3.5. Effect of Disbonding in Adhesive Layer

Experimental results [11-12] have shown that as the crack propagates under fatigue
loading, disbonding occurs in the adhesive. This disbonding cannot be predicted by a
static analysis because it occurs due to cyclic loading at much lower stresses than those
predicted by static analysis. The prediction of disbonding due to cyclic loading is rather
complex and was not attempted in the present research. The disbonding in the adhesive
layer influences the load transfer to the repair patch, and ultimately, the stress intensity
factors in the cracked sheet. The presence of a disbond will cause less load transfer from
the cracked sheet to the repair patch and thereby increase the stress intensity factors and
hence crack growth rate. The presence of cyclic disbonding should be taken into
consideration in making any life predictions.
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The experimental studies were used to account for the disbond in the adhesive layer.
These studies have shown that the disbonding in the adhesive layer tends to be elliptical
in shape with the leading edge of the disbond coinciding with the leading edge of the
crack (Figure 13). The minor axis of the disbond is along a direction that is at right
angles to the crack plane and at the crack centerline. The ratio of minor to major axis of
the disbond depends on a number of parameters such as the type of adhesive (ductile
versus brittle), adhesive thickness and the properties of bonded (metal and composite)
materials.

Location of Crack Tips in Cracked Sheet

%
2a —_’\T

Elliptical Shape Disbond in Adhesive

Figure 13. Schematic Representation of Adhesive Disbond Under Cyclic Loading

3.6. Development of Computer Program to Calculate Normalized SIF’s

A computer program was Wwritten to compute shear stresses in the adhesive and stress
intensity factors in the cracked sheet due to applied loading and thermal mismatch
between the metallic sheet and composite repair patch. The stress intensity factors can be
used in making crack growth and residual strength predictions.

The computer program is written to account for the elliptical disbond in the adhesive with
major axis along the crack plane and leading edge of the disbond coinciding with the
crack tip. The user has the option to input the minor to major axis ratio of the disbond b/a
(Figure 13). The recommendation for the size of disbond to be used in the analysis is
given in the section on design guidelines and in the AFGROW [26] software program
further developed as part of the present research.

The normalized stress intensity factor is calculated based on a unit applied remote stress
to an infinitely wide center-cracked panel. In AFGROW, this normalized stress intensity
factor is equivalent to the ratio of the patched stress intensity factor to the unpatched
stress intensity factor.

The computer program also accounts for the effect of bending in the structure. The
bending correction discussed in Section 3.3 has been incorporated in the program. The
computer program has the following inputs:
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Cracked Sheet Parameters:

1) Elastic Modulus, E,

2) Poisson ratio, v,

3) Coefficient of linear expansion, o,
4) Thickness, h,

Repair Patch Parameters:

1) Elastic modulus of the repair patch along the crack plane direction, E,

2) Elastic modulus of the repair patch along loading direction at right angles to crack
plane, E,

3) Poisson ratio, v,

4) Shear Modulus G,

5) Coefficient of linear expansion of patch material o, along loading direction

6) Patch width W

7) Patch Length L

8) Patch Thickness

Adhesive Parameters
1) Thickness, ‘h,,

2) Shear Modulus, ‘p,,
3) Ratio of minor to major axis of debond, ‘deb’

Crack Parameters

1) Half crack length, ‘a

2) Increment in half crack length, ‘da for computing stress intensity factors
3) Number of runs, ‘nab’

Temperature Parameters

1) Temperature difference, AT, which causes thermal mismatch

3.7. Implementation of Composite Repair/Analysis into AFGROW

This section describes the implementation of a preliminary composite bonded repair
design module into the AFGROW computer program. This feature has been integrated
with the existing life prediction capability so that the effect of a repair patch may be
included in crack growth analysis. A limited “knowledge base” has also been built into
this system to aid the user in selecting an initial patch material and ply layup. The
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following sections contain a description of the features, capabilities and limitations of this
module.

3.8. Repair Design Considerations

A number of factors need to be considered in designing composite repair patches for
metallic structures. The following factors are taken into account in AFGROW:

1. Repair patch material and ply thickness.

Repair patch layup.

Substructure material properties and thickness.

Effect of thermal stresses.

Effect of bending.

Adhesive properties and thickness.

N R W

Local disbonding of adhesive around crack.

While there are several other important considerations such as repair location, repair
geometry and dimensions, and edge taper, these are outside the scope of the current
version of AFGROW (Version 3.85.6). The program is intended to provide preliminary
solutions to repair design problems and to assess the effect of various parameters on the
life of repaired substructures. More detailed analyses would require the use of tools
capable of creating and analyzing detailed models of the repaired structure. Such tools
may then be used in combination with AFGROW for life prediction purposes.

3.9. Program Implementation

The bonded repair module was designed to work with the existing crack growth analysis
capability so that a repair can be applied to the current analysis model at any time. The
life prediction routine includes the effect of the repair in all subsequent analyses until the
repair is deleted by the user. However, repairs are not applicable to all the crack
configurations offered in AFGROW. The range of applicability is outlined in the section
below.

3.9.1. Repair Application Bounds

Repairs are applicable to all the through-crack solutions in AFGROW with the exception
of the solid circular shaft, pipe, and disc solutions. They may not be applied to any of the
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part-through crack configurations. In addition, certain other limitations are placed on the
dimensions of the model to be repaired. These are:

1. Minimum thickness of plate = 0.04”
2. Maximum thickness of plate = 0.125”

3. Maximum crack length = 2.00”

The minimum thickness and maximum crack length limitations are due to the range of
applicability of the repair design solution module. The maximum thickness limitation is
imposed because the current release of AFGROW (Version 3.85.6) can not model the
variation in crack length (through the thickness) that occurs when repairs are applied to
thicker specimens.

AFGROW prohibits the application of a repair if the model configuration and dimensions
are not within the acceptable limits.

3.9.2. Design Parameters and Controls

It is recommended to set up all the model parameters and properties before designing a
repair. AFGROW uses these parameters and the repair patch properties to compute a set
of “beta correction factors” which are used to correct the stress intensity factors during
crack propagation to account for the presence of the repair patch. These factors are stored
in a tabular form as a function of crack length. If the model geometry, dimensions or
material properties are changed after a repair has been applied, AFGROW automatically
deletes the repair as the beta correction factors are no longer valid. In such a case, the
repair must be redesigned.

Spectrum information is used by AFGROW to automatically design a repair. If the
“auto-design” feature is to be used, then the correct spectrum must be opened and the
stress multiplication factor must be specified prior to using this feature. The program
determines the maximum stress level from the spectrum and uses this information to
choose the most appropriate repair material for the application.

The repair design module is invoked by clicking on the “Design” option in the “Repair”
pull-down menu. The repair design dialog, shown in Figure 14, appears on the screen.
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Figure 14. The Composite Patch Design Dialog

This dialog contains various controls that can be used to change the repair patch
parameters. These parameters and the controls that are used to modify them are
explained in the following sections.

3.9.2.1. Material Properties

The current patch material is displayed on the upper left portion of the dialog box. A new
material may be specified by clicking the “Change Material” button. This causes a file
browser containing patch material data files to pop up. This release of AFGROW
includes one such file, called patch.pch, which contains material properties for boron,
graphite, and GLARE. The user may then select one of these materials to be the new
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patch material. If a material other than these is to be used, data for that material must be
present in patch . pch or any other * . pch file.

The material properties are referred to on the dialog by means of abbreviations, as seen in
Figure 14. The list of properties is:

EL: Young’s modulus in longitudinal direction

ET: Young’s modulus in transverse direction

GLT: Shear modulus

PNU: Poisson’s ratio

ALFL: Coefficient of thermal expansion in longitudinal direction
ALFT: Coefficient of thermal expansion in transverse direction

It must be noted that the program does not allow the user to alter the values of the
material properties directly. This is because the repair module relies on the material
being orthotropic; unexpected results may occur if the properties do not satisfy the
conditions of orthotropy. Since most repair applications utilize boron, graphite or
GLARE, the material datafile included with AFGROW is sufficient in most cases. Other
materials must be used only after ensuring that they are orthotropic.

A default ply thickness has been set for each of these materials. This value is editable,
and may be set to any value. The other editable value is AT, which is used to account for
thermal stresses due to differences in the curing temperature of the patch and the
temperature of the plate.

3.9.2.2. Patch Dimensions

The patch dimensions (width and length) are used only for the purposes of calculating the
effect of bending. The beta correction factors are based on the assumption of an infinite
patch; the patch dimensions do not affect them unless bending is included in the solution.

3.9.2.3. Ply Layup

This release of AFGROW can model patches with up to 32 plies. The user may specify
the orientation of each ply by selecting the ply from the scrollbox and entering its
orientation in the textbox above it. If a symmetric patch with an even number of plies is
to be modeled, then it is sufficient to enter the orientations for half the plies; AFGROW
will automatically mirror the layup to construct the other half.
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It is recommended to have 70% 0° plies, 20% +45° plies, and 10% 90° plies. However,
in most cases it is not possible to achieve this distribution and the closest distribution
must be used. Also, it is desirable to place the +45° plies on the surface as this will
reduce the tendency of the patch to delaminate at the edges.

3.9.2.4. Patch Type

AFGROW allows the user to specify certain other options that are important from a
design consideration. These are controlled by means of toggle buttons and include:

Symmetric patch

Specifying this option automatically mirrors the specified layup to create a symmetric
patch. Consideration must be given to maintaining balanced laminate symmetry to avoid
warpage in the precure of the patch.

Double-sided patch

This option applies the patch to both sides of the metallic substructure. Selection of this
option may depend on factors such as location and accessibility of the repair.

An assumption is made in AFGROW that the effect of bending is negligible when
patches are applied to both sides of the plate. The third toggle button, which controls
whether bending is considered or not, is then automatically selected and “greyed out,” or
made inaccessible, to the user.

No Bending

The user may select this button to either include or neglect the effect of bending,
depending on whether bending due to the presence of the patch is deemed to be
significant at the repair location or not.

It may be turned on to assess the contribution of bending to the total stresses at the repair
Jocation, and to study the effect of bending on the fatigue life of the patched structure.

It must be noted that “bending” in this case refers only to the bending induced by the
repair patch on the plate.
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3.9.2.5. Adhesive Properties

The user may specify the adhesive that is used in the repair by entering the name, shear
modulus (GXY), and thickness of the adhesive. In addition, a variable called DEB,
which characterizes the extent of the disbond in the adhesive in the region of the crack,
must be specified. The disbond is assumed to be elliptical in shape, with the crack lying
along the major axis of the ellipse. DEB is the aspect ratio of this ellipse. The value of
DEB must be between 0 and 1.

3.9.2.6. The Patch Stiffness Indicator

Near the bottom of the dialog box, and spanning its width, lies the patch stiffness
indicator. A diamond-shaped marker indicates the equivalent stiffness of the current
patch as a percentage of the stiffness of the plate to which the repair is to be applied.

It is desirable for a composite repair patch to have an equivalent stiffness between 100%
and 120% of the stiffness of the metallic substructure. In AFGROW, this region is
considered “ideal,” with the 70% - 100% and 120% - 150% ranges being allowable, and
any value outside these ranges considered unacceptable. If the stiffness indicator shows a
stiffness that is not acceptable, the program will not allow that design to be applied.

Every time any of the parameters are changed, the equivalent properties of the patch are
recomputed based on laminate theory, and the stiffness indicator moves to the position
corresponding to the new equivalent stiffness of the patch.

The patch stiffness indicator is intended as an aid to the user in monitoring the relative
stiffnesses of the patch and the plate.

3.9.2.7. The Auto Design Feature

Using this feature selects the most suitable patch configuration for the current problem
definition and updates all the controls on the repair dialog box to reflect the new values.
Auto Design selects the patch material based on the maximum stress in the spectrum
(boron for 25 KSI and above, graphite for 20-25 KSI and GLARE for below 20 KSI) and
the thickness of the metal plate (GLARE for t < 1/16”, graphite or boron for t > 1/16”).
Auto Design then determines an optimum number of plies that satisfies the stiffness
requirement while maintaining laminate symmetry and a reasonable level of orthotropy
(% of £45° and 90° plies as outlined in section 3.10.2.5).
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3.9.2.8. Other Controls

The “Critical SIF” dialog allows the user to control whether the critical stress intensity
factor will be based on the patched structure or the unpatched structure, by selecting the
appropriate toggle button. While this has no bearing on the patch design itself, it is used
during fatigue crack propagation to determine the failure criteria.

“Show” buttons are used to select the plots that are to be displayed after the beta
correction factors are computed. These include “Beta Correction Factor” plots and Stress
Contour plots of the stresses in the patch and the adhesive.

3.9.3. Patch Design

After all the design parameters have been specified, the “Apply” button may be clicked to
compute the beta correction factors. At this point the main AFGROW window displays a
color-coded schematic of the ply orientations, and a list of the equivalent properties of the
composite patch, which are computed using laminate theory, Figure 15.

. Ply Orientations , Material Name: BORONEPDXY
_—.. \ : EX = 16567 1e+07

EY « 8.594688e+06
GXY = 3.35807e+06
THICK = 00572
MNLIXY = 0.314233
MUYX = 01B1037
4 ALF| ~ 27E384e-08
ALFT = 38610Ze-06

Beta Correction Factors

Figure 15. Ply Orientations and Equivalent Patch Properties

The beta correction factors are plotted on this screen as soon as they are computed. A
bigger window that allows the user to overlay several beta correction factor plots is also
displayed if the option is selected, Figure 16.
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Figure 16. Beta Correction Factor Plot Window

The program also displays contours of the shear stresses in the adhesive and the stresses
in the patch in a separate window, Figure 17:
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Figure 17. Stress Contour Window

This window includes toggle buttons to display either the adhesive or patch stresses.
Currently, this release of AFGROW does not include the capability to display skin
stresses and the toggle button is made inactive.

The slider bar at the lower right-hand comer controls the crack length. As the stresses in
the patch and the adhesive redistribute continuously as the crack grows, this effect may
be simulated by dragging the slider bar to the desired crack length.

It must be noted that the size of the plot area and the representation of the crack are kept
constant when the crack length is changed using the slider bar. A display of the current
coordinates and the stress at that point are provided to the left of the plot when the cursor
is brought into the plot window. In addition, the stresses shown are for the center-
cracked case and are not intended to reflect the actual stresses present for other
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geometries. However, it is assumed that the Beta correction factors will provide a
reasonable approximation of stress intensity for other geometries, especially if the cracks
have grown a reasonable distance from the geometric configuration (notch, hole, etc.)

When a satisfactory patch design is achieved, the patch design dialog may be dismissed.
At this point, a representation of the patch on the plate is displayed in the main window
as shown in Figure 18.

— AFGROW v3.83 Beta: Untitled

Center through-crack
Standard Solution

> «c=0.15

w = 4.00

Figure 18. Main Window Showing Applied Patch

All subsequent crack growth analyses will include the effect of the patch until it is deleted
using the “Dismiss” option in the Repair menu.
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The patch is automatically deleted when the model configuration, dimensions, or material
properties are changed. This is because the stored beta factors are design specific and no

longer valid.

The effect of different patch designs on fatigue crack growth life may be observed by
overlaying the crack growth plots. Other features of the code, such as retardation models,
residual stress capability, and extreme environment effects may be used simultaneously

with the composite repair capability.
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4. WEIGHT FUNCTION DEVELOPMENT

Durability and strength evaluation of notched and cracked structural elements requires the
calculation of stress intensity factors for cracks located in regions characterized by
complex stress fields. This is particularly true for cracks emanating from notches and
other stress concentration regions that might be frequently found in mechanical and
structural components. In the case of engine components, complex stress distributions
are often due to temperature effects. The existing stress intensity factor handbook
solutions are not sufficient in such cases due to the fact that most of them have been
derived for simple geometry and loading configurations. The variety of notch and crack
configurations and the complexity of stress fields occurring in engineering practice
require more efficient tools for calculating stress intensity factors than the large but
nevertheless limited number of currently available ready made solutions obtained for a
few specific geometry and load combinations.

Therefore, methods were developed for the efficient calculation of stress intensity factors
for cracks in complex stress fields by using the weight function approach.

4.1.  Technical Background

Most of the existing methods of calculating stress intensity factors require a separate
analysis for each load and geometry configuration. The weight function method
developed by Bueckner [27] and Rice [28] simplifies considerably the determination of
stress intensity factors. If the weight function is known for a given cracked body, the
stress intensity factor due to any load system applied to the body can be determined by
using the same weight function. Therefore, there is no need to derive a ready made stress
intensity factor for each load system and resulting internal stress distribution. The stress
intensity factor can be obtained by multiplying the weight function, m(x,a), and the
internal stress distribution o(x) in the prospective crack plane and integrating the product
along the crack length ‘a’.

The success of the weight function technique for calculating stress intensity factors lies in
the possibility of using superposition. It can be shown [29] that the stress intensity factor
for a crack body (Figure 19) subjected to the external loading, S, is the same as the stress
intensity factor in a geometrically identical body with the local stress field, o(x), applied
to the crack faces. The local stress field, o(x), in the prospective crack plane is due to the
external load, S, and it is determined for the uncracked body by ignoring the presence of
the crack.
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a) b)

(@) Local stress field in an uncracked body ~ (b) Geometrically identical body with local
subjected to external loading, S tractions, o(x) applied to crack faces

Figure 19. Nomenclature and Concept of Superposition
(used with permission from G. Glinka)

The unique feature of the weight function method is that once the weight function for a
particular cracked body is determined, the stress intensity factor for any loading system
applied to the body can be calculated by simple integration of the product of the stress
field, o(x), and the weight function, m(x,a).

K= Ec(x) m(x,a)dx (34)

The idea of using weight functions is illustrated in Figures 20a and 20b, where the
through thickness crack is used as an example. The weight function, m(x.a), can be
interpreted as the stress intensity factor that results from a pair of splitting forces applied
to the crack face at position x. Since the stress intensity factors are linearly dependent on
the applied loads, the contributions from multiple splitting forces applied along the crack
surface can be superposed and the resultant stress intensity factor can be calculated as the




sum of all individual load contributions. This results in the integral (34) of the product of
the weight function, m(x,a), and the stress field, o(x), for the case of continuously
distributed stress field.

The Weight Function Approach to
Calculation of Stress Intensity Factors

Weight Fugction - stress intensity factor, K, for a

pair of splitting forces applied to
crack surfaces

For a through crack
in infinite plate:

1 Jja+x

~NTla Ya—x

m,(x,a)=

I ja-x
my(x,a)=- —
m2 Na+x

Stress intensity factors for crack crack tips A and
B respectively:

K,=m,(x,a,P)=—— \/a-i-x

Ky =mg(x, a,P)-—q/_Jg;—i

Figure 20a. Weight Function and Stress Intensity Factors for a Through-Crack in an Infinite Plate
(used with permission from G.Glinka)
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The Weight Function Approach to
Calculation of Stress Intensity Factors

In the case of two forces, by using superposition
K,=m,(x.aqa P)-l»mA(x.,,a P
PI fx +a lx.
Sk e
qTa yo—x I X,
In the case of multiple forces
K, =ma, Xy Pl) + m(a, Xn s P2)+. . A+mi(a, X, P;.)

For the stress distribution ¢(x)

K, = ?s (x)m ((x,a)dx

-a

Ky = j o (x)my(x,a)dx

Figure 20b. Weight Function and Stress Intensity Factors for a Through-Crack in an Infinite Plate
Subjected to multiple Loads and/or Continuously Distributed Stress.
(used with permission from G. Glinka)
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4.2.  Universal Weight Functions for One-Dimensional Cracks

The weight function is dependent on the geometry only and in principle should be
derived individually for each geometrical configuration. However, Glinka and Shen [30]
have found that one general weight function expression can be used to approximate
weight functions for a variety of geometrical configurations of cracked bodies with one
dimensional cracks of Mode I:

m (x,a)= \/7_5 1+M (1——]1+M2(1—§]]+M3(1—§—)% (35)

The system of coordinates and the notation for through 1nternal and edge cracks are given
in Figure 21.
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Figure 21. Single Edge Crack and Central Through-Crack Under Symmetrical Loading

In order to determine the weight function, m(x,a), of eq. (35) for a particular cracked
body it is sufficient to determine [31] the three parameters M;, M,, and M,. Because the
weight function of eq. (35) is the same for all cracks then the same integration routine can
be used for calculating stress intensity factors from eq. (34). Moreover, only a limited
number of generic weight functions is needed to enable the determination of stress
intensity factors for a large number of load and geometry configurations.
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4.3.  Universal Weight Functions for Two-Dimensional Part-Through Surface and
Corner Cracks

In the case of 2-D cracks such as semielliptical and corner surface cracks in plates and
cylinders, the stress intensity factor changes along the crack front. However, in most
practical cases the deepest point A (Figure 22) and the surface point B are associated with
the highest and the lowest value of the stress intensity factor along the crack front.
Therefore, the weight functions for the points A and B have been derived [32]
analogously to the universal weight function (35).

e For point A (Figure 22)
1 3

1 =
mborsfont)e g 1o1-{ o1 T ou - 09

2nla—x a

e For point B (Figure 22)

wfw

G37)

1
2 X \2 xY X
mB(x,a,a/c,a/t)=E 1+M1B(ZJ +M23(E) +M3B(;)

The weight functions m,(x,a) and my(x,a) given above corresponding to the deepest and
the surface points A and B, respectively, have been derived for one-dimensional stress
fields (Figure 22), dependent on one variable , x, only.
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Figure 22. Semielliptical Surface Crack in an Infinite Plate of Finite Thickness, t

4.4. Sequence of Steps for Calculating Stress Intensity Factors Using Weight
Functions

In order to calculate stress intensity factors using the weight function technique the
following tasks need to be carried out:

e Determine stress distribution o(x) in the prospective crack plane using linear elastic
analysis of uncracked body (Figure 19a), i.e., perform the stress analysis ignoring the
crack and determine the stress distribution o(x) = o, f(S,x); where: o, - nominal
stress, X - coordinate, S - external load

e Apply the “uncracked” stress distribution, o(x), to the crack surfaces (Figure 19b) as
tractions
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e Choose appropriate generic weight function (i.e., choose appropriate M;, M,, and M,
parameters).

® Integrate the product of the stress function ¢(x) and the weight function m(x,a) over
the entire crack length or crack surface, eq. (34).

4.5. Determination of Weight Functions

The derivation of the weight function of eq. (35) for a one-dimensional crack is
essentially reduced to the determination of parameters M,, M,, and M,. There are several
methods available depending on the amount of information available as described in [31].
The most frequently used method based on two reference stress intensity factors is
described below.

Supposing that two reference stress intensity solutions K, and K., for two different stress
fields 6,,(x) and o,,(x), respectively, are known, a set of two equations can be written by
using eqgs. (34) and (35). The third equation necessary to determine parameters M,, M,,
and M, can be formulated based on the knowledge of the crack surface slope [31,32] at
the crack center (central through cracks) or from the crack surface curvature at the crack
mouth (edge cracks). The three pieces of information result in three independent
equations which can be used for the determination of unknown parameters M,, M,, and
M;:

e Central Through Cracks Under Symmetric Loading (Figure 21a)

-
3

- 1 —
K, = fcrl(x)# 1+M1(l—§)2 +M2(1—§) +M3[1—§j2 dx  (38)
2n(a —x a a a

3

1
~ 1
K, = forz(x)# 1+M][l—§)2 +M2(1—§—j +M3(1—i)2 dx  (39)

2mla — x a

1 3
0 2 X \2 xY X \2
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<
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o Edge Cracks

I 3

J:Gﬂ(x)m (1———) +M2[1—31+M3(1—§]2 dx (41

! 3

- 1
= [0.&) 1+M1(1—-’5)2+M2(1—5] +M3(1—3‘-]2 dx  (42)
,/2nia Xi a a a

1 3

8° 2 X )2 xY x )2
1+M|1-=| + M I1-=| +M,|1—— =0 43
ox* ,/2n(a——x5 1( a} 2( a) 3( a) “3)

x=0

The two reference cases can be obtained from the literature or they can be derived using
finite element method. Most often available are the solutions for the uniform and linear
stress distributions induced by simple tension or bending load and those cases were
predominantly used to derive the weight functions listed below.

e Semielliptical Surface and Corner Cracks

The set of equations necessary for deriving M, parameters for the weight function
corresponding to the deepest point A on the crack front (Figure 21) was found to be
identical to the set of equations derived for the edge crack.

1 1 3
X X X )2
J:G"(X)Jz—Tu_(a—x) 1+M1A( —) +M2A(1—;) +M3A(1—-;) dx  (44)

1 3

fo,z(x)m 1+M]A( i) +M2A(1—§) +M3A[1_2;_)2 dx (45

1 3

0° 2 X )2 x\ X \2
1+M,. [1-= +M, |1-=| +M,,11-= =0 46
axz fzn(a_X) IA( a) ZA( a) 3A( a) ( )

x=0

In the case of the surface point B the first two equations were the same as previously and

the additional equation was derived [32] by satisfying the condition that the weight
function must vanish for x=0.
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0=1+M;; +M,; +M;; (49)

The three unknown parameters M, can be determined by simultaneously solving one of
the set of equations presented above.

4.6. Numerical Integration of the Weight Function and Calculation of Stress
Intensity Factors

The calculation of stress intensity factors from the weight function requires integration of
of the product “s(x)m(x,a)” along the crack length according to eq. (34). The weight
function can always be written in the general form of eq.(36) or eq.(37). However, the
stress distribution “s(x)” can take any form depending on the problem of interest. If the
stress distribution is given in the form of a mathematical expression, analytical
integration can be performed and closed form integrals of eq. (1) are sometimes feasible.
However, very often the stress distribution “s(x)” is obtained from finite element
calculations and the results are given as a series of stress values corresponding to a range
of point of coordinate “x.” Therefore, a numerical integration technique is needed for the
integration of equation (34) and the calculation of stress intensity factors. Two methods
of efficient integration of eq. (34) are described below.

4.6.1. Integration Using Centroids of Areas Under the Weight Function Curve

The integration method using the area centroids is based on the following theorem:

If m(x,a) and o(x) are monotonic and linear function, respectively, and both depend on
variable x only, (Figure 23), then the integral (34) can be calculated from expression (47),
representing the product of the area S under the curve m(x,a) and the value of the function
o(X) corresponding to the coordinate x=X of the centroid C.

K =S*o(X) (50)

The weight functions, m(x,a), are monotonic and nonlinear. The stress functions, o(x),
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are usually nonlinear as well. Therefore, in order to apply the theorem above to the
integral (34), the integration interval is divided into “n” subintervals in such a way that,
the stress function o(x) is approximated by the secant line drawn between the end points
of each subinterval Figure 22. Thus, the stress function o(x) over the subinterval “I,”

may be written in the form of eq. (51),

c,(x)=Ax+B; for (xi—l)SxSxi (51)

where :

A, :ixi);c_s(_x,-;l) and B, =o(x;)- Ax; (51a)
X =X

After substitution of expression (51) into eq. (34) and summation over all subintervals the
following expression for the stress intensity factor can be derived.

=l x;

Each integral in eq. (52) can be computed by using the simplified (Figure 23) integration
method given in the form of eq. (50). Thus, the stress intensity factor, K, can be finally
written in the form of expression (53).

K= Zs +0(X,),  wherei=12,..n (53)

In order to calculate the stress intensity factor given in the form of eq. (53), it is necessary
to calculate the areas S, under the weight function curve m(x,a), and the coordinates of
their centroids, X,. Both the areas S; and the centroid coordinates X; for each sub-interval
can be calculated once in a general form based on the generalized weight function (39).
However, they appear to be too lengthy for an easy hand calculation. Fortunately, further
simplification of the integration routine is possible due to the fact that the weight
functions are smooth within their ranges of integration. Therefore the procedure can be
reversed (Figure 25) by calculating first the areas S,” under the stress function o(x) and
| the coordinates X, of their centroid. Then the appropriate values of the weight function
m(X',a) can be calculated from expression (35). It is worth noting that in the case of the
piece-wise approximation of the stress function, o(x), the areas S; and the coordinates of
their centroids, X; , can be easily calculated from relations (54) and (55), respectively.

K= i Xj‘(Aix +B; )m(x,a)dx (52)
|
|
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X! (Xi — X )[20(Xi~1 )"' G(Xi )] (55)

i i ?,[()'(Xi )+ G(X i-1 )]

Finally the stress intensity factor, K, is calculated from expression (56).

K=YSm(X,a) (56)

i=l

Thus, the numerical procedure for calculating the stress intensity factor using the
integration method described above requires the calculation of appropriate parameters
using equations (35) and (54-56). The method described above is recommended for quick
approximate calculations with the help of a hand calculator.
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Figure 23. Graphical Representation of Simplified Integration of the Product of Two One-
Dimensional Functions, 2) Monotonic Nonlinear Weight Function m(x,a), b) Linear Stress Function,
S(x)
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Figure 24. Application of the Simplified Integration Method to the Case of Nonlinear Stress

Distribution; a) Weight Function m(x,a), b) Linearized Stress Function
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Figure 25. Integration Method Based on the Subareas and Centroids of the Linearized Piecewise
Stress Function, a) Weight Function m(x,a), Linearized Piecewise Stress Function

4.6.2. Analytical Integration of the Linearized Piecewise Stress Distribution and
the Weight Function

The integration technique described in Section 4.6.1 is convenient for hand calculator
calculation when the stress distribution can be approximated by a few linear segments.
However, the segments adjacent to the crack tip can not be large because the weight
function tends to infinity near the crack tip and if the stress is the highest near the crack
tip the method described above might be sometimes inaccurate. Moreover, in the case of
stress distributions characterized by high gradients accurate approximation of the stress
distribution requires relatively large number of linear pieces and the integration has to be
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carried out with the help of a computer. However, the computer integration routine can
also be significantly simplified because closed form solution to the integral (52) can be
derived analytically for each linear piece (Figure 25) of the stress function s(x).

The stress function s(x) over the linear segment “i” can be given in the form of the linear
equation (51). Thus the contribution to the stress intensity factor associated with the
stress segment “i” can be calculated from eq. (34) after substituting appropriate
expressions for the stress and the weight function. The solutions given below have been
derived for the deepest and for the surface point of semielliptical crack using the weight
function (36) and (37), respectively. The solution to one-dimensional cracks is the same

as for the deepest point of semielliptical cracks.
e Deepest Point A (Figure 22)

3

- 1
K* = .E;(AiX+Bi)__—2—X 1+M1A(1—§-)2 +M2A(1—§—) +M3A(1—§)2 dx  (57)

2nal 1——
a

e Surface Point B (Figure 22)

! , s
kP=[" (Aix+Bi)\/_—22n_;- 1+MIB(§)2 +M23(§J +M3B(§)2 dx (58

The closed form expressions resulting from the integration of eq. (57) and eq. (58) are
given below.
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Deepest Point A (Figure 22)

KA = 2 Oli(C“ + M Cpp + MGy + M3Aci4) (59)
l ma +|3i(ci3 +M1ACi4 +M2Aci5 +M3AC1’6)

where :

o, =B, +aA,; and B, = —aA,
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Surface Point B (Figure 22)

KE = Ii (c; +B; XD + M;pDyy + My Dy + My D) (60)
| ma —Bi(DB +MpDjy + MypDys + MBBDiG)

where :
o, =B, +aA; and B, =-aA,

Equations (59) and (60) can be used for calculating stress intensity contributions due to
each linear piece of the stress distribution function by substituting appropriate values for
a, X,,, X;, A; and B,. The stress intensity factor K can be finally calculated as the sum of all
contributions K, associated with the linear pieces within the range of 0 = x = a.

KziKi (61)

Thus, the integration can be reduced to the substitution of appropriate parameters into
equations (59-60) and summation according to eq. (61). This makes it possible to
develop very efficient numerical integration routines, which is important in the case of
lengthy fatigue crack growth analyses.

4.7. Implementation of Weight Function Methods into AFGROW

This section describes the adaptation of the Weight Function Solutions into the
AFGROW program. It also describes the procedure required to apply a stress distribution
to a weight function model configuration in the AFGROW program.
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4.7.1. Selecting a Weight Function Stress Intensity Solution Model

To select a Weight Function Stress Intensity Solution model; go to the Insert menu;
select Model; and then select Weight Function Solutions menu item. This will cause a
Model Configuration Dialog Box (Figure 26) to appear on the screen.

Figure 26. Weight Function Model Configuration Dialog

This dialog consists of a scrolled window that displays iconic representations of the nine
Weight Function model configurations currently available in the AFGROW program. To
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the right of each of these icons is a brief description of the corresponding model
configuration. You may select any of the weight function solutions in this dialog by
selecting the toggle button to the left of the model of interest. Depressing any toggle
button causes any toggle button that is already depressed to pop out, ensuring that only
one configuration is selected.

After selecting the desired configuration, the user must click the DONE button at the
bottom of the dialog to choose that configuration for further analysis.

When a Weight Function Stress Intensity Solution model has been chosen, the title of the
specimen configuration in the Main Display Area will include a “Weight Function
Solution” statement (Figure 27).

Quarter-elliptical Corner Crack
Weight Function Solution

Y

w = 4.00

Y.

Figure 27. AFGROW Model Configuration Display

4.7.2. Entering a Stress Distribution

Each Weight Function Stress Intensity Solution Model requires an “uncracked” stress
distribution along crack plane.

The AFGROW program uses a normalized stress distribution in the prospective ‘a’ crack
plane (S,) to calculate Stress Intensity Factors (SIF) for the part-through cracks (2-D
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solutions); and a normalized stress distribution in prospective ‘c’ crack plane (S,) to
calculate SIF for the through-cracks (1-D solutions).

Note that both solutions currently allow the input stress field to vary in the one direction
only. When a part-through crack transitions into a through-the-thickness crack, the model
is automatically converted into the appropriate 1-D case, and the applicable stress
distribution is used to continue the life prediction.

It is recommended that the weight function stress distribution(s) should be normalized
according to the stress value at the crack origin. However, it is important to remember
that the load spectra are also normalized with respect to the maximum spectrum stress
(usually maximum stress=1.0). Therefore, it may be necessary to adjust the Stress
Multiplication Factor (SMF) to account for the additional normalization of the weight
function stress distribution. The goal is to ensure that the proper stresses are being
applied to the crack face.

To enter a stress distribution; first go to the Insert menu; click Model, and then select
Geometry & Parameters. When the Model Geometry & Parameters Dialeg Box
appears, click on the Stress Distribution button. This action calls the Weight Function
Stress Distribution Dialog Box (Figure 28), which contains several control groups.

A user may enter stress distributions along both ‘a’ and ‘c’ crack planes through a table
of editable text fields in the scrolled window. The default assumes that only two sets of
data are used. If the user wishes to use more than two sets, the desired number of the sets
in the °Y” and <X directions must be entered. In cases where the input stress distribution
does not cover the extent of the specimen dimensions, the last input stress value is
assumed for the remaining model’s geometry. When a 1-D problem is active, the ‘S’
part of the stress distribution table is “grayed out.”

At the bottom of the dialog, a Preview Window has been placed in order for a user to
visualize the entered, tabular stress distribution. In order to plot the inputted stress
distribution press the Apply button.

The two toggle buttons near the left side of the Preview Window are used to switch
between plots of the ‘S,” and ‘S’ stress distributions.
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Figure 28. Weight Function Stress Distribution Dialog

The functionality of other controls in Weight Function Stress Distribution Dialog Box
are:

1. NORMALIZE button: Normalize stress distribution with respect to the stress value
in the crack origin row.

2. APPLY button: Apply the current stress distribution to the chosen model.
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_ READ button: Read files with a “.wfs” extension , which contain stress distribution

information.

. SAVE button: Save the current stress distribution to a file.

. DISMISS button: Dismiss the dialog box.
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S. MODELING OF FATIGUE GROWTH OF MULTIPLE CRACKS

There are several ways of modeling the fatigue growth of multiple cracks. The two
methods described briefly below are concerned with multiple cracks growing in the same
plane.

Method 1:

The simplest method is to neglect the interference between cracks and to model only the
coalescence of cracks as they approach each other. The coalescence of cracks is often
model assuming the resultant dimensions of the final crack as a sum of all cracks joining
each other as shown in Figure 29.

® ]

l 2a=2a; +2a, '

Figure 29. Coalescence of Two Through-Cracks in a Finite Width Plate

It is assumed in that type of fatigue crack growth modeling that cracks grow as they were
single cracks with stress intensities at each tip calculated as for a single crack (stage 1).
They subsequently join each other as soon as their tips come to contact with each other
and from that point on the two cracks are considered to be transformed into one crack,
with the dimension being the sum of appropriate lengths of all cracks in contact (stage 2).
In the case of semielliptical surface cracks it is assumed that two or more cracks form one
resultant crack as soon as their surface tips come into contact with each other (Figure 30).
The resultant length is the sum of the surface lengths of all cracks in contact. The depth is
assumed to be equal to the depth of the deepest crack among all cracks forming at a given
moment, the single resultant crack.
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Figure 30. Coalescence of Two Semielliptical Surface Cracks in a Finite Thickness Plate.

-

Method 2:

The second method is based on the observation that fatigue cracks join each other very
fast as soon as their cyclic plastic zones at the adjacent tips come into contact. It is
assumed that the cracks grow independently of each other but they join immediately
when the notch tip plastic zones come in contact as shown in Figure 31.
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Figure 31. Coalescence of Fatigue Cracks Due to Sudden Jump Over the Cyclic Plastic Zones
Coming in Contact with Each Other

Because the plastic zones contain highly damaged material it is assumed that the crack
tips suddenly jump over the plastic zones as soon as they touch each other. Method #2 is
more conservative because it assumes that the fatigue crack growth over the touching
plastic zones occurs in one cycle. The resultant crack size is determined as the sum of the
physical crack length of each crack plus the diameter of the cyclic plastic zone of each
crack in contact. The diameter of the cyclic plastic zone in plane stress is calculated as:

2
1| AK
I, =—1| —
4n| Oy

The stress range and the plastic zone size are well defined in the case of constant
amplitude loading. However, in the case of variable amplitude loading the stress range
have to be defined by the user depending on the problem being analyzed. It may be the
largest range in the loading history or it can be the average value determined at given
crack size.

In the case of the surface semielliptical cracks it is assumed that the crack join each other
as soon as their plastic cones on the surface come into contact. The resultant length on the
surface is the sum of the length of each crack in contact plus the diameter of each cyclic
plastic zone coming into contact with each other (Figure 32).
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The cracks are considered to be “unaware” of each other until their plastic cyclic zones
come into contact with each other. However, in order to model the coalescence of fatigue
cracks, not only their growth has to be monitored continuously but their positions with
respect to each other as well. Therefore, modeling of the growth of multiple fatigue
cracks requires simultaneous monitoring of the growth and position of several cracks with
respect to a chosen global system of coordinates. The task is intellectually not difficult
but it may pose a labor intensive programming task and lengthy numerical calculations.

2¢ =2¢,tr,T2¢,11,

Figure 32. Coalescence of Two Semielliptical Cracks Over the Contacting Cyclic Plastic Zones
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APPENDIX A
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NOTATION FOR WEIGHT FUNCTIONS

A - crack length for one-dimensional cracks or crack depth (minor semi-
axis) for semielliptical cracks
A, B, - coefficients of the linearized stress function in the subinterval “i”

c - crack length (major semiaxis) for semielliptical crack

C.

i - coefficients of the integrated weight function m,(x,a) in association with

the linearized stress field s(x)
D, - coefficients of the integrated weight function my(x,a)in association with the

linearized stress field s(x)

K - stress intensity factor
K, - mode I stress intensity factor (general)
K,* - mode I reference stress intensity factor for the deepest point A of a crack

under the uniform stress field
K2 - mode]l reference stress intensity factor for the surface point B of a crack

under the uniform stress field

KA - mode I stress intensity factor for the deepest point A on the crack front

K® - mode I reference stress intensity factor for the surface point B on the crack
front

M, - parameters of the weight function (=1, 2, 3)

M, - coefficients of the weight functions for the deepest point A (i=1,2,3)
L\ - coefficients of the weight functions for the surface point B (i=1,2,3)
m(x,a) - weight function

m,(x,a) - weight function for the deepest point A of a crack

my(x,a) - weight function for the surface point B of a crack

S - area under a monotonic curve m(x,a)

S/ - area under the linearized stress function s(x) corresponding to the
subinterval “i”

S, - area under the weight function curve m(x,a) corresponding to the sub-
interval “1”

Q - the semielliptical crack shape factor: Q = 1 +1.464(a/c)'® fora/c <1
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- wall thickness of a cylinder or plate thickness
- the local, through the thickness coordinate along the crack depth
- coordinate x of the centroid of the area S

- coordinate x of the centroid of the area S; corresponding the sub-
interval “i”

- coordinate x of the centroid of the area S;” corresponding to the sub-
interval “1”

- stress distribution

- value of stress function at X = x;

- value of stress function at x =X

- areference stress distribution

- the geometric stress intensity correction factor for the deepest point A

- the geometric stress intensity correction factor for the surface point B
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WEIGHT FUNCTIONS FOR CRACKS IN PLATES & DISKS

The weight functions are given in the form of expressions describing the M., parameters as
functions of crack dimensions and geometry of the cracked body. Given are the range of
application, the accuracy and the source of the reference stress intensity factors for each

set of parameters M including the generic geometry of the crack body.

Through-Crack in an Infinite Plate Subjected to Symmetrical Loading.

WEIGHT FUNCTION (Figure 33a):

1 3
l 1 2
m(x,a) = —\/—_7-——2__)— 1+ Ml(l —3‘-]2 + Mz(l - 5} + M{l —5]2
2nla —x a a a
PARAMETERS:
M,= 0.0698747

M,= -0.0904839
M,= 0.427203

ACCURACY: Max. error less than 1% when compared to exact solution
REFERENCES:

- weight function:
Glinka G.. Shen G., 1991, “Universal Features of Weight Functions for Cracks in Mode
L,” Engng. Fract. Mech, Vol. 40, No. 6, pp. 1135-1146.

- reference data:
Tada H.. Paris P. C.. Irwin G.R., 1985, The Stress Analysis of Cracks Handbook, 2nd ed.,
Paris Productions Inc., St. Louis, Missouri, pp. 5.11-5.11a.
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Figure 33. a) Through-Crack in an Infinite Plate Subjected to Symmetrical Loading; b) Central
Through-Crack in a Finite Width Plate Subjected to Symmetrical Loading
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Central Through-Crack in a Finite Width Plate Subjected to Symmetric Loading

WEIGHT FUNCTION (Figure 33b):

| w

1
2 X )2 x\ ( x)
m(x,a)= ————1+M,|1-=| +M,|1-=| +M,|1-=
( ) 1/ZTtia—xi l[ aj 2( a) a

PARAMETERS:
a a 2 a 3 a ¢
M, = 0.06987 +0.401 17[—) - 5.5407(—) + 50.0886(—) - 200.699(—)
W W W W
a i a 6 a 7
+395.552(—j —377.939(—) +140.218(—j
w A% w
a a 2 a 3 a ‘
M, =—0.09049 — 2.14886(—J + 22.5325(—) - 89.6553(—) + 210.599(—)
w w w W
5 a 6
—239.445(—3‘-] +111.128(—)
\%% W
a a 2 a } a ¢
M, =0.427216 + 2.56001(—) - 29.6349(—) + 138.40(——) - 347.255(—)
W w w w
a > a 6 a 7
+457. 128(—) - 295.882(—) +68.1 575(—]
w W W

RANGE OF APPLICATION: 0 <a/w <0.9.
ACCURACY: Better than 1% when compared to the reference solution.
REFERENCES:

- weight function:
Moftakhar A.. Glinka G., 1992, “Calculation of Stress Intensity Factors by Efficient
Integration of Weight Functions,” Engng. Fract. Mech., Vol. 43, No. 5, pp. 749-756.

Glinka G., Shen G., 1991, “Universal Features of Weight Functions for Cracks in Mode
1,” Engng. Fract. Mech., Vol. 40, No. 6, pp. 1135-1146.

- reference data:
Tada H.. Paris P. C.. Irwin G.R., 1985, The Stress Analysis of Cracks Handbook, 2nd ed.,
Paris Productions Inc., St. Louis, Missouri, pp. 2.1-2.2, 2.34.
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Sih G., 1973, Handbook of Stress Intensity Factors, Institute of Fracture and Solid
Mechanics, Lehigh University, Bethlehem, P.A.
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Edge Crack in a Semi-Infinite Plate

WEIGHT FUNCTION (Figure 34a):

1 3

2 x 2 x) ( in
m(x,a)= ———=|1+M,|1-=| +M,|1-—| +M;|1-—
( ) ’27'[(a-Xj 1( a) 2( aj 3 a

PARAMETERS:
M,=0.0719768
M,= 0.246984
M.= 0.514465

ACCURACY: Max. error less than 1% when compared to the reference solution
REFERENCES:

- weight function:
Glinka G.. Shen G., 1991, “Universal Features of Weight Functions for Cracks in Mode
L,” Engng. Fract. Mech., Vol. 40, No. 6, pp. 1135-1146.

- reference data:
Tada H.. Paris P. C.. Irwin G.R., 1985, The Stress Analysis of Cracks Handbook, 2nd ed.,
Paris Productions Inc., St. Louis, Missouri, pp. 8.3-8.3a.

Sih G., 1973, Handbook of Stress Intensity Factors, Institute of Fracture and Solid
Mechanics, Lehigh University, Bethlehem, P.A.
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P=t P=j . =t

Figure 34. a) Edge Crack in a Semi-Infintite Plate; b) Edge Crack in a Finite Width Plate; ¢) Two
Symmetrical Edge Cracks in a Finite Width Plate Subjected to Symmetrical Loading
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Edge Crack in a Finite Width Plate

WEIGHT FUNCTION (Figure 34b):

1

2 X \2 X 1 X

mix,a)= ————{1+M,|1——| + M, |1-—| +M,|]1-—

( ) 1/27tia——xi l( a} "( aj 3( aj
PARAMETERS:

2 5
M, =0.0719768—1.51346(1]—61.1001(1) +1554.95( ) —14583. 8[ ) +71590. 7( j
%Y A% w

6 7 8
—205384(3-) ++356469(3-j —368270(i) +208233( j — 49544 i}
W w w w

| w

2 5
M, =0.246984 + 6.47583(3—) + 176.456(—a—j - 4058.76( j +37303. 8[ ~18 1755( j
w w w

6 7 8
+520551(3j —904370(% +936863(ij —531940( ) +127291(3)
A% W W W

2
M, = 0.529659—-22.3235(3-j+532.074[3—) —5479.53( j +28592, 2( )
w %% w

5 6
—81388.6(3j +128746(i) -106246(3) +35780.7(—)
W w w w

RANGE OF APPLICATION: 0 <a/w <0.9.
ACCURACY: Better than 1% when compared to the reference solution.
REFERENCES:

7

- weight function:
Moftakhar A.. Glinka G., 1992, “Calculation of Stress Intensity Factors by Efficient
Integration of Weight Functions,” Engng. Fract. Mech., Vol. 43, No. 5, pp. 749-756.

Glinka G.. Shen G., 1991, “Universal Features of Weight Functions for Cracks in Mode
1,” Engng. Fract. Mech., Vol. 40, No. 6, pp. 1135-1146.

- reference data:
Tada H.. Paris P. C.. Irwin G.R., 1985, The Stress Analysis of Cracks Handbook, 2nd ed.,
Paris Productions Inc., St. Louis, Missouri, p. 2.27.
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Kava A. C... Erdogan F., 1980, “Stress Intensity Factors and COD in an Orthotropic
Strip,” Int. J. Fracture, Vol. 16, pp. 171-190.
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Two Symmetrical Edge Cracks in a Finite Width Plate Subjected to Symmetrical
Loading

WEIGHT FUNCTION (Figure 34c):

1 3

- 1 2
m(x,a) =~ 1+M](1—5j2 +M2(1—§) +M3(1-3’5j2
2mla—x a a

PARAMETERS:

3 3 4
M, =0.08502—0.02230[ij—1.41028(ij +4.64559(3j +19.6924[i)

W \%% A% W
5 a 6 a 7 a 8
~148.266(ij +336.837(—] —336.591(—} +127.009(—)
w w W W
a 2 a } a 4
M, =0.2234—0.6146(3—j+11.1687(—) —56.5326(—) +151.937(-—)
W A% w W
5 a 6
—182.634(3j +86.4731[—j
W W
2 3 4
a a a a
M, =0.4983+0.7512[—j—10.5597(-—j +47.9251(—] —115.933(—)
W A%% W w
a 3 a 6
+131.976(—] —59.8893[—)
w W

RANGE OF APPLICATION: 0 <a/w <0.9.
ACCURACY: Better than 1% when compared to the reference solution.
REFERENCES:

- weight function:
Moftakhar A.. Glinka G., 1992, “Calculation of Stress Intensity Factors by Efficient
Integration of Weight Functions,* Engng. Fract. Mech., Vol. 43, No. 5, pp. 749-756.

Glinka G., Shen G., 1991, “Universal Features of Weight Functions for Cracks in Mode
I,” Engng. Fract. Mech., Vol. 40, No. 6, pp. 1135-1146.

- reference data:
Tada H.. Paris P. C.. Irwin G.R., 1985, The Stress Analysis of Cracks Handbook, 2nd ed.,
Paris Productions Inc., St. Louis, Missouri, p. 2.31.
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Shallow Semielliptical Surface Crack in a Finite Thickness Plate (alc<1)

WEIGHT FUNCTION (Figure 35) - Deepest Point A:

3

1
+M2A(1—§) +M3A(l—§—j2

9| —

X
1+M —
xa) 1/271:(21 xi IA{ )

PARAMETERS

\/._
M,, =3
67

=

M, = —=—(2Y,-3Y )—-—

8
M;, = (2Y1 _Yo)""s”

where:

1.65
Q=1+1 .464(3)
C

Y0=AO+A1(%j2+A( ) [ ]

A, = 1.0929+0.2581(3j—0.7703(3) +0. 4394( )
C C

0.688
0.147 +(3J
C
1 9953
A, =0.995-————+ 22.0[1 -(iﬂ
0.027 + (3] ¢

C

1 8.071
A, =-1.459+ ———— 2421 1[1 —(iﬂ
0.014+ (-"1} ¢

C

c—flm

A, =O.456—3.045( ] 2007( J
c

and
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a 2 a ) a °
venen(2) o) on )

2 3

B, = 0.4537+o.1231(3) 0. 7412(aj +o.460[3)
C C

a
C

C
2 1
) 0534( ) + -
N

0.198+(~

B, =-1.652 +1.665(

[e]

B, = 3.148—3.126(3)—————1—————+17.259I:1 —(—j

9.286
: }
€/ 0.041 +(ij
C

C
1 9.203
B, =—4.228+ 3.643(3] f— 31 .924{1 - (EH
¢ o.ozo{ij ¢

C

WEIGHT FUNCTION (Figure 35) - Surface Point B

1
2 X \2 x )
)= ———e— | 1+ M | = M, = M.
mB(X a) 7—2na—x) + lB(a) + 2B(aj + JB(

PARAMETERS:
M, = —3“—(51:1 -3F,)-8

JQ

M,, = 2% (2F, - 3F, )+ 15

G

M, = \/_(101: ~7F,)-8

where:
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1.65
Q=1+ 1.464(i)
C

o-feocf] <]
c,-1m-os2)-oone 2]

C, = 1.5083—1.3219( )+0 5128(3)
C

o

0.879

0.157 + (i)
C
and

F{M(j o
)

o =1.2687-1 0642(

C, =-1.101-

e-r|m

I}

+1 4646[

(e R
olm

3
j —0.7250(%
C

0.199

0.035+ (ij
C

RANGE OF APPLICATION: 0 = 2/t =0.8 and 0 =a/c=1.0
ACCURACY: Better than 3% when compared to the FEM data.
REFERENCES:

D, =1.1207-1.2289

TN
o |

+ 0.5876(

olw

D, = 0.190—0.608(3) +

- weight function:

Wang X.. Lambert S. B., 1995, “Stress Intensity Factors for Low Aspect Ratio
Semielliptical Surface Cracks in Finite-Thickness Plates Subjected to Non-uniform
Stresses,” Engng. Fract. Mech., Vol. 51, No. 4, pp. 517-532.

Shen G.. Glinka G., 1991, “Weight Functions for a Surface Semi-Elliptical Crack in a
Finite Thickness Plate,” Theor. Appl. Fract. Mech., Vol. 15, No. 2, pp. 247-255 (this
paper contains the older version of the weight function).

Shen G.. Plumtree A.. Glinka G., 1991, “Weight Function for the Surface Point of Semi-
Elliptical Surface Crack in a Finite Thickness Plate,” Engng. Fract. Mech., Vol. 40, No.
1, pp. 167-176 (this paper contains the older version of the weight function).
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- reference data:

Shiratori M.. Miyoshi T.. Tanikawa K., 1986, “Analysis of Stress Intensity Factors for
Surface Cracks Subjected to Arbitrarily Distributed Surface Stress (2nd Report, Analysis
and Application of Influence Coefficients for Flat Plates with a Semielliptical Surface
Crack),” Trans. JSME, Vol. 52, pp. 390-398.

Gross B.. Srawley J. E., 1965, “Stress Intensity Factor for Single-Edge-Notch Specimens
in Bending or Combined Bending and Tension by Boundary Collocation of a Stress
Function,” NASA TN, D-2603.

Gross B.. Srawley J. E., 1966, Plane Strain Crack Toughness Testing of High Strength
Metallic Materials, ASTM STP 410.

Raju I. S.. Newman J. C., 1979, “Stress Intensity Factors for a Wide Range of
Semielliptical Surface Cracks in Finite Thickness Plate,” Engng. Fracture Mech., Vol.
11, pp. 817-829.

Newman J. C.. Rajul. S., 1981, “An Empirical Stress Intensity Factor Equation for the
Surface Crack,” Engng. Fracture Mech., Vol. 15, pp. 185-192.

Figure 35. Shallow Semielliptical Surface Crack in a Finite Thickness Plate
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Deep Semielliptical Surface Crack in a Finite Thickness Plate (a/c > 1)

WEIGHT FUNCTION (Figure 36) - Deepest Point A:

3
2

1
- 1
X X X
m, (X,a 1+M Z+M i 1-=] + M, 1=
A( ) (-7-—)27!8’ = IA( ) 2A( aj 3A[ aj

PARAMETERS:

24
M,, = \/__(ZY -3Y,
M,, =3
Y 8
M;, ='\/'2_—Q”(2Y1 _Y0)+'5‘
where:
( a 165 )
1+1464(——) for0< <1.0
c

Q=1
{1+1464 3 }(f‘-) for—>10
a C

Y, A+A( j + 23
faws?)

2
A]=1.08461—~1.01106( )+02454( J
c

A, = 1.13047—0.12945(

oo

a
c
A, =0.7855 +0.5517(3) -0. 0934( )
c

and
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2 4
a a
Y =B,+B,|—| +B,|—
=B,+,2] +,[2]
a a)’
B, =0.5044 - 0.2609(—) + 0.0529[-—)
c c
)2
a a)
B, = —0.6459+O.4177[—j—0.0731(—)
c c

o |

B, = 0.7259—0.6352(3)+0.1492(
Cc

WEIGHT FUNCTION (Figure 36) - Surface Point B

1

1
m,(x,a)= _\/515(‘1—:5 1+MIB(1—§J2 +MZB(1—§] +M3B(1—§-j
PARAMETERS:

M = B_Z(SE _3Fo)"8

NG

_lsn
)

M,, =3—g(10131 ~7F,)-8

%

where:

M, (2F, —3F,)+15

90

to | W




( a 1.65 a 1
1+1.464(—] for0<—-<1.0
C v

:{1“-“64(2)1“}(3)2
w|oneli] ol

C, =1.33469 —0.29091(3) +0. 08125(2‘)
C C

C, = 1.757673—1.5275(3)+ 0. 37185(3‘)
Cc C

C, =0.08429 + 0.4423(3) 0. 1894( j
Cc

and

2 4
F = l:DO + Dl(ij + DZ(Ej Ng
t t C
a a 2
D, =1.11855- o.z%s(-j + 0.07817(—j
C C

2
D, =1.15312- 0.98743(i] +0.233 15(3)
C C

2
D, = 0.2246— 0.4784(3) + 0.1864(3)
C C

RANGE OF APPLICATION: 0 = a/t = 0.8 and 0.6 = a\c = 2.0
ACCURACY: Better than 2% when compared to the reference FEM data.
REFERENCES:

- weight function:
Wang X., 1995, “Weight Functions for High Aspect Ratio Semielliptical Surface Cracks
in Finite-Thickness Plates,” University of Waterloo, to be published.

- reference data:

Shiratori M.. Mivoshi T.. Tanikawa K., 1986, “Analysis of Stress Intensity Factors for
Surface Cracks Subjected to Arbitrarily Distributed Surface Stress (2nd Report, Analysis
and Application of Influence Coefficients for Flat Plates with a Semielliptical Surface
Crack),” Trans. JSME, Vol. 52, pp. 390-398.
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Murakami Y.. et al., 1992, Stress Intensity Factors Handbook, Vol. 3, Pergamon Press,
pp- 588-590.

Figure 36. Deep Semielliptical Surface Crack in a Finite Thickness Plate.
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Quarter-Elliptical Corner Crack in a Finite Thickness Plate

WEIGHT FUNCTION (Fig. 37) - Deepest Point A:

1 1 3

2 X )2 X x )2

m,(x,a)= ——=(1+M (1——) +M [l————j +M (1——)
A( ) o x 1A N 2A N 3A .

PARAMETERS:
24
0 —3Y,)- 5

2
MlAz\/'é%

MzA =3

z (2Y1 —Yo)""z'

6
My, ==
NS

where:

1.65
Q=1+1 .464[3)
C

3
A,=4972—- 13.216(3) + 6.747(3) + 1.918(3)
C C C
)+ 12.906(3) ~13. 441(%
C C
) - 10.797(% 3(%
C C

A, =-1293+1.857

ol

A, =-0572+ 3.073(

o

and
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2 3 4

Y, =B +B[ )+B2(a) +B3(3] +B4(ij
t t t

3}3
c

a a a)

B, = —0.507+1.373(—-j—0.740(—) —0.184(—J
c c C

B, =3.468 —9.028(% + 6.349(3j -0. 135(2‘)
C C

2
B, =0.500 —0.323(3J + 0.213(3) - 0.052(
C C

B, =-1. 359+1731(a)+5 357 EJ 6.370(3)
C C C

3
B, =—O.l62+2.977(a] 8250( j +5.804 3)
C

C

olm
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WEIGHT FUNCTION (Figure 37) - Surface Point B

1

2
m,(x,2)= = 1+ MIB(E—)

PARAMETERS:
3n A
My :TQ_(SFl _DFO)—g
M,, i/s,’f(zF ~3F,)+15
M., =7,Q—(10F1 ~7F,)-8
where:
a 1.65
Q=1+1.464(;)
a ! a
F, [c +c( )+c( j +c( ) +c( ”H
t c
co=3.34o—4.495[ j+3 016( ) ~0.727 (ij
C
C, =0.2318—0.226l( J 1658( ) +1.504(3j
C
a a ’
cz=22.95—100.9(—)+152 2( ) ~72. 92(«j
C C
a 2 a 3
C, =-39.16+194. 1[—) 302. o(—j +145. 9(—)
C C
a a ?
C4=30.80—142.9(—)+212 6( ) - 99. 92(—)
C C
and
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o
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a a

2
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SR ORIORIOIY
) 0511(%)
2]

) +2.677 i‘-)
C C
2 3
D3=9.682—15.932( j 8848( +13.91 ( )

3
D,=-1.141- 9.176(—) + 30.228(ij - 19.195(——)
c c c

RANGE OF APPLICATION: 0 = a\t =0.8 and 0.2=a\c = 1.0
ACCURACY: Better than 1.5% when compared to the FEM data.
REFERENCES:

D, =2.831- 3840( )+2477(3
C

olm

D, =4.600-20. 498( j-l— 29. OOI(EJ
2

c
D, ——4019+15057( j 12624(

- weight function:

Zheng X. J.. Glinka G., Dubey R. N., 1994, “Stress Intensity Factors and Weight
Functions for a Corner Crack in a Finite Thickness Plate,” Engng. Fracture Mech.,(to be
published, 1996).

- reference data:

Shiratori M.. Mivoshi T., 1985, “Analysis of Stress Intensity Factors for Surface Cracks
Subjected to Arbitrarily Distributed Surface Stress (Analysis and Application of Data
Base of Influence Coefficients Ky),” Proc. Third Conf. Fract. Mech., Soc. Materials

Science Japan, pp. 82-86.

Murakami Y., et al., 1992, Stress Intensity Factors Handbook, Vol. 3, Pergamon Press,
pp. 591-597.

Raju I. S.. Newman J. C., 1988, “Stress Intensity Factors for Corner Cracks in
Rectangular Bars,” in Fracture Mechanics: Nineteenth Symposium, ASTM STP 969,
T.A.Cruse, ed., pp. 43-55.
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Figure 37. Quarter-Elliptical Corner Crack in a Finite Thickness Plate
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Radial Edge Crack in a Circular Disk

WEIGHT FUNCTION (Figure 38):

1 3
2 X \2 <Y ( xji
mix,a)=——=1+M,|1-—— | +M,|1——] +M,|1——

PARAMETERS:

) : -
—0.04732 + 0.49586(%) - 1.94141[%) + 3.96175(%)
M, = ) 5 6 exp|:9.87969(—a—ﬂ
5) +2m0s( 5] orson 5] ’
~4.56100 2| +2.83026l & | —0.74080] 2
-asoios 5] 28509 5 :

B 2 3
~0.58602 + 8.48276(—3j - 30.90993(3-} +112.21 153(3]
D D D

M, =exp

5 7

4 6
—280.25303| = | +428.48183 2| —356.66155 = | +125.34267] =
D D D D

2 3

—1.09836 +3.06605 = |+16.85709| & | —48.14897] &
D D D

M, =exp

7

4 5 6
+54.61627(i +6.91042(3j —61.35817(i) +36.127o(3j
I D D D D

RANGE OF APPLICATION: 0 <a/D<0.9.
ACCURACY: Better than 1.5% compared to the reference solution.
REFERENCES:

- weight function:
Kiciak A., 1995, University of Waterloo, to be published.

Glinka G.. Shen G., 1991, “Universal Features of Weight Functions for Cracks in Mode
1,” Engng. Fract. Mech., Vol. 40, No. 6, pp. 1135-1146 - this paper contains the original
version of the weight function with coefficients M; given in tabular form.

- reference data:
Wu X. R.. Carlsson J. A., 1991, Weight Functions and Stress Intensity Factor Solutions,
Pergamon Press.

98




Figure 38. Radial Edge Crack in a Circular Disk
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WEIGHT FUNCTIONS FOR CRACKS IN CYLINDERS

The weight functions are given in the form of expressions describing the M, parameters as
functions of crack dimensions and geometry of the cracked body. Given are the range of
application, the accuracy and the source of the reference stress intensity factors for each
set of parameters M, including the generic geometry of the crack body. The geometry of a

cylinder is characterized by the ratio of the external to internal radius, Ro/R;.
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Internal Axial Semielliptical Surface Crack in a Thick Cylinder (R,/R;=2.0)

WEIGHT FUNCTION (Figure 39) - Deepest Point A:

El

2 X x\ ( x)
m,(x,a)= ———=|1+ M, | 1-— | +M,,|1-— +M,, |1-—
A( ) m IA( a] ZA( aj 3A a

PARAMETERS:

A 24
M, = —(— Y, + -’Yl)__

20

M,, =3

where:

1.65
Q=1+1.464(3j and t=R,-R,
C

2 4
Y, =A,+A ( j+A (tj +A3(%]
a (aY aY a)' aY’
A, =1.12- 0.207(—j - 0.153L—j + 1.305(—] - 2.007(—) + 0.933(—j
C C C C C
2 3 4 5
A, =-0.111- 7.205(3j + 36.455(?—] - 83.649(3) +389. 741( ) ~35. 219(?-)
C v Cc C
2 5
)-132.935(%] +323.535( j 343, 920(%) +131. ssz(cJ

2
A, =-0.140+ 18.828(3) - 85.243(% +1 18.941(3j - 52.084[-&—j
C C C C

and

A, =1.498+ 20.265(3
C
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Y, =B, +B,(%]+B

B, =0.687-0. 377(

J

ORI
t t
3 4 5
)+ 617 ( ) -10. 671( j +12.482(%j —5.015(8
3 4 5
a +41.963(3 +—56.282(3j +23.554(3)

B, = —0.163—1.496[3}7.725(—
C C C C

)
a a ? a ) a ’
B2=0.821+7.481(-) 33. 313(—) +54. 993( ) —44.961(—] +15.196[—)
C C C C C
a
C

2 3 4
B3=—O.O87+3.742( ) 20.172 a) +33.425(3] —16.841(—a—j
C

C C

(i

o |

WEIGHT FUNCTION (Figure 39) - Surface Point B:

1 1 3
2 X )2 X X \2
mB(x,a)z—\/&_ 1+MIB(;J +M2B(;) +M3B(;‘j

PARAMETERS

M, =—%£—(2F0 ~5F,)-8

M,, = 2L GF, —F,)+15

o

M., =————(3F0 ~10F,)-8

o

where:
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o feretheld] <)

2 3 4
CO=5.923—20.55(3j+36.937(3] —31.634[ j +10. 37(a)
C C
a
Cc

C, =-3.607+11.686 3)-14.138(
C

olm

) +9.935( ) -3. 774( j |
) -86. 904[5‘:—) 3+28 149((:) |
j +48.124(—:—)

]+ 112.643

o|m

C, =19.14—72.902(
C, = 9.586—64.389(

o |®

)+151.449(3 —144.822(
C

o |P

and

SR CRORGIE
D, =0.687 - 1821( j+2718(%j -1981( ) 0_567(3)“
] —6244(

C
D, = 8.504 —42.608 3) + 87.828(3) ~82. 735( J +29. 055(
C C C

olm

| &

E)

c
ay a a

D, =-0.666 + 6.54(—j ——21.603(—) +27.036( ] -11. 326( )
c c c

RANGE OF APPLICATION: R/R;=2.0,0=a/t=0.8,a/c=0and 0.2=a/c=1.0
ACCURACY: Better than 3% when compared to the FEM data.
REFERENCES:

D, = -1.797 + 9.399(3) - 19.195(3) + 17.881(
C C
a
C

- weight function:

Zhene X. J.. Glinka G., 1995, “Weight Functions and Stress Intensity Factors for
Longitudinal Semi-Elliptical Cracks in Thick-Wall Cylinders,” J. Press. Vess. Technol.,
ASME, vol. 117, 1995, pp. 383 - 389

- reference data:
Mettu S. R.. Raju L. S.. Forman R. G., 1988, “Stress Intensity Factors for Part-Through

Surface Cracks in Hollow Cylinders,” NASA Technical Report, No. JSC 25685 LESC
30124.
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Andrasic C. P.. Parker A. P., 1984, “Dimensionless Stress Intensity Factors for Cracked
Thick Cylinder Under Polynomial Crack Face Loading,” Engng. Fract. Mech., Vol. 19,
1984, pp. 187-193.

Murakami Y., et al., 1986, Stress Intensity Factor Handbook, Vol. 2, Pergamon Press, pp.
309-317.

Figure 39. Internal Axial Semielliptical Surface Crack in a Thick Cylinder
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Internal Axial Semielliptical Surface Crack in a Thick Cylinder (R,/R;=1.5)

WEIGHT FUNCTION (Figure 39) - Deepest Point A:

PARAMETERS:

- ZE (-, +3v)-2

M;, "0
MzA =3

8
= (Y, —2Y1)+—5—

M"A
RRVER]

where:

1.65
Q=1+1.464(3) and t=R,-R,
C

2 4

a a a

Y, =A,+A | = |[+A,|—| +A;|—
v U z(t) 3(tj

A, =1.044+0.07 exp{-— 5.051@}
¢

C
A, = —0.433+0.665 exp{— 3.393
C
A, =0711+ 1.161¢:xp[— 3.386(3)}
C

A, =-0.179+1.46 exp[— 4.165(3ﬂ
C

and
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2 3

a a a

Y, =B,+B,|—|+B,| —| +B;| —
b I(t) Z(tj 3(t)

B, = 2.825 -2.16exp[— 0.035[3)}
C

B, =-0.225+0.265 exp[— 5.574(

2

C

B, =0.307+ O.753epr:—- 4.025

N

B, = 1.398——1.284exp[0.079[3ﬂ
C

WEIGHT FUNCTION (Figure 39) - Surface Point B:

1 3
2 X )2 x Y X \2
mB(x,a)=ﬁ 1+M1B(Zj +MZB(EJ +M3B(;)

PARAMETERS:

Mg = 32(2F0 —5K )_ 8

JQ

M,p = 12(31?I -F,)+15

JQ
3n

JQ

M,, =——(3F, -10F,)-8

where:
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1.65
Q=1+1.464(3) and t=R,-R,
C

o-fec(dcld e8]
e moomsss suf o1 24(]

C, =-0.199-10.239 exp{— 46.053(3) - 4.009(
c

ﬂ
a a 2
C, =0.119+8.784 exp|:— 4.081(—) +1 .092(—) }
C Cc

2
C, =-0.104+ 28.133exp{— 9.959(3] - 9.817(3j }
Cc C

o|®

and

SEORIORIbIE
o) ot

2
D, = -3.448 +24.23 3]—50.221(3) +42.498( j ~13. 099(3)
C C C

2 3
D2=6.535—30.622(3)+45.644(3) —25.05(% +3.636( )
C C C
a a ? a
D3=2.243-21.677(—j+65.546[—j —76.555( ) +30. 4”3[ )
C C C C

RANGE OF APPLICATION: R/R;=1.5,0=a/t=0.8,a/c=0and 0.2 =a/c=1.0
ACCURACY: Better than 3% when compared to the FEM data.
REFERENCES:

- weight function:

Zhene X. J.. Kiciak A.. Glinka G., 1996, “Determination of Weight Functions and Stress
Intensity Factors for Semielliptical Cracks in Thick-wall Cylinders,” Nucl. Engng.
Design, to be published.
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- reference data:

Mettu S. R.. Rajul. S.. Forman R. G., 1988, “Stress Intensity Factors for Part-Through
Surface Cracks in Hollow Cylinders,” NASA Technical Report, No. JSC 25685 LESC
30124.

Andrasic C. P.. Parker A. P., 1984, “Dimensionless Stress Intensity Factors for Cracked
Thick Cylinder Under Polynomial Crack Face Loading,” Engng. Fract. Mech., Vol. 19,
1984, pp. 187-193.

Murakami Y.. et al.. 1986, Stress Intensity Factor Handbook, Vol. 2, Pergamon Press, pp.
309-317.
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Internal Axial Semielliptical Surface Crack in a Thick Cylinder R/R=1.25)

WEIGHT FUNCTION (Figure 39) — Deepest Point A:

1 3

2 x \2 x Y ( x)i
m. (x,2)= | 1+ M, [ 1-2 |+ M, [ 1-2 ] M, [ 1-2
A( ) '27‘[(3_-—){) IA( aj ZA( a) A a

PARAMETERS:

-z (—Yo +3Y1)_25_4

MlA -
7a

MzA =3

61

N}

8
M3A = (Yo ‘2Y1)+g

where:

Q=1 +1.464(3)1'65 and t=R,-R,
; 2 4

wnenlger(] s

A, =1.010+ 0.0998€xp[:—13.15(%ﬂ

A, = 0.055+0.366exp{—31.17(3j]
C

A, = —0.057+3.269exp[—3.859(3):|
C

A, = —0.149+0.06lexp\i1.354(iﬂ
C

and
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| &

ona(2)onf ol

B, =6.594 —5.944exp{— 0.012[?-
C

\__/f'"‘

B, =-0.136+ 0.436exp{— 8.663(

o |
—

B, = 0.269+O.787exp[i— 4.562(3

c

\_/

B, =1.552 -1.538exp[0.0434(iﬂ
C

WEIGHT FUNCTION (Figure 39) - Surface Point B:

! 1 3
2 X )2 X X \2
mB(x,a)= \/;t;(— 1+M1B(—a—) +M2B(;) +M3B(;j

PARAMETERS:

Mg = 73‘—71(21:0 _5F1)_8

157

Q

M,, = - (3F, —10F, )-8

JQ

M, = —=(F, - F,)+15

where:
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1.65
Q=1+1.464(ij and t=R,-R,
Cc

F, - [c +c( )+c @ +c(%”(%j

C, =5.566-19. 583(cj+37 335(:) —33.705( ) +11507( y
j i) +1044(%j —1616[ )

C, =12.497-49. 0678 )+72.59(3) 45, 216(%} +9, 55( )

c
a a a
C;= 3.468—29.49( +83. 789( j 93 289(—) +35. 507( j
C c

o|m

w

C,=-1.75+ 9.514(3 —16.618(

oo o
o, -os-om{rsof(] -om{Z] so2e(s)

4
j +0. 999(3) +0.333(3)
C C
2 ) +1 szé(ij
C

3
D3=O.569—6.605(—)+21.548(i] -26.37(3) +10.853(3)
C C C

RANGE OF APPLICATION: R/R,=1.25,0=a/t=08,a/c=0and 0.2 =a/c=1.0
ACCURACY: Better than 3% when compared to the FEM data.
REFERENCES:

D, =4.116-15.985 Ej+22.358( ) —12.235(
c c

o]m

D, = —0.533+2.626( ] 3 412(
a
c

- weight function:
Zhene X. J.. Glinka G.. Dubey R. N., 1995, “Calculation of Stress Intensity Factors for

Semielliptical Cracks in a Thick-Wall Cylinder,” Int. J.Pres.Ves. & Piping, Vol. 62, pp.
249-258.
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- reference data:

Mettu S. R.. Raju L. S.. Forman R. G., 1988, “Stress Intensity Factors for Part-Through
Surface Cracks in Hollow Cylinders,” NASA Technical Report, No. JSC 25685 LESC
30124.

Andrasic C. P.. Parker A. P., 1984, “Dimensionless Stress Intensity Factors for Cracked
Thick Cylinder Under Polynomial Crack Face Loading,” Engng. Fract. Mech., Vol. 19,
1984, pp. 187-193.

Murakami Y.. et al., 1986, Stress Intensity Factor Handbook, Vol. 2, Pergamon Press, pp.
309-317.
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Internal Axial Semielliptical Surface Crack in a Thick Cylinder (R /R;=1.1)

WEIGHT FUNCTION (Figure 39) - Deepest Point A:

-
S

1
2 x )2 x\ ( xj
m,(x,a)=————=|1+M,,|I-— +M. ., |1-=| +M,, |1-—
A( ) '27r(a_xj IA( aj ZAE a) 3A a

PARAMETERS:

2 24
M,, = \[—E%(ZYO +3Y,) <
M. =3

6
M;, =—\/§:—6—(2Y1 _Yo)+

1.65
Q=1+1.464(3) and t=R,-R,
Cc

2 4
Y, = A, +AI(%J +A2[%j

2 3
A, =1.1449 - 0.6699[3] +1 .0464(3] - o.szoz(ij
C

c c
a a 2
A, =3.84-10.53 l(—-j +6.93 1(-—}
c c
a a ? 1
A, =-8.519 +20.456(*j— 13.027(——) + 55
C C ay)’
0.061+(—j
c

and




2 4
Y, =B0+BI(%j +B [ )

2 3
B, = 0.4732—0.4967(“}0 7576( J —0.4417(3)
Cc

B1=2.415—6.901[ +35. 928( j —1291( )
c

B, = -6.251+13 282( j 8097( ) 1 55
0.090+(3j
C

WEIGHT FUNCTION (Figure 39) - Surface Point B:

3
1 el
X X )2
+ MZB[;J + Mss (;)

) —

2
mB(x,a): Tox 1+MIB(§j

PARAMETERS:

My :‘?ﬁt—(ﬂ"l ‘“3Fo)_8

JQ
157
M, = ——(2F, - 3F,)+15
"
M., =j_Q—(10F1 ~7F,)-8
where:
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1.65
Q=1+1.464(3] and t=R_-R,
C

2 4
Fo{cﬁc}(ij +c,(ij } a
t \t c
C, = 1.2959—0.2935(3) +0.1203[
C

2 3 4 5
) +293.879(3j —270.492(3) +92.502(3j
C C C

02+ [—j
C

o |

C = 0.1256+27.96(3)—143.547(
C

o |

C, =-2.065+ 1.15(3) +
C

o ooz 3]
D, =12519— 08104(%)“‘04901(%)

3 4 5
j 81. 361(3) +167.357(3) —153.789(3) +52.309(3J
C C C C
)+ 05
0299+( )

RANGE OF APPLICATION: R/R;=1.1,0=2a/t=0.8,and 0 =a/c=1.0
ACCURACY: Better than 5% when compared to the FEM data.
REFERENCES:

D, =0.3311+15 433[

LS

D, =-1.879 + 1.087(

o |®

- weight function:
Wang X. J.. Lambert S. B., 1996, “Stress Intensity Factors and Weight Functions for

Longitudinal Semielliptical Surface Cracks in Thin Pipes,” Int. J Pres. Ves. & Piping,
Vol. 65, pp. 75 -87.

Shen. G.. Liebster T. D.. Glinka G. ,1993, “Calculation of Stress Intensity Factors for
Cracks in Pipes,” Proc. of the 12th Int. Conf. on Offshore Mech. and Arctic Engng.,
ASME, M. Salama et al., ed., Vol. III-B, Materials Engineering, pp.847-854. (this paper
contains the older version of the weight function, limited to 0 = a/t = 0.8 and 0.2 = a/c =

1.0)
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- reference data:
Raju I. S.. Newman J. C., 1982, “Stress Intensity Factors for Internal and External
Surface Cracks in Cylindrical Vessels,” J. Press. Ves. Technol., Vol. 104, pp. 293-298.

Andrasic C. P.. Parker A. P., 1984, “Dimensionless Stress Intensity Factors for Cracked
Thick Cylinder Under Polynomial Crack Face Loading,” Engng. Fract. Mech., Vol. 19,
1984, pp. 187-193.
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External Axial Semielliptical Surface Crack in a Thick Cylinder (R,/R;=2.0)

WEIGHT FUNCTION (Figure 40) - Deepest Point A:

where:

1.65
Q=1+1.464(Ej and t=R,-R,
C

2 4
Y, = A, + AI(%) + AZGJ + A{%)

B 2 [\ 4
A, =0.98463 +0.10409 exp| 1 1.93568(9-j - 44.74122(3) + 53.45540(% ~21 .48712(5“-)
C C C C

2 3 4
A, =0.02208 — 0.04469 exp 35.69496(3}138.51103(3) +185.87345(3) —85.19922(3) }
C C C C

Cc

2 3 4
A, =0.41663+0.41917 expl:22.34798(3) - 87.48907(3) +1 18.30990(?—) - 55.88622(3) }
C C C

\3

2 \4'!
A, =—0.07482 +17.78423 exp{— 23.84462@) + 71.77065(3) -1 18.12933(9-)
C C C

+63.64254(?-i I
c) |

and
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2 4
Y, =B, +B1(3J+B2(EJ +B3[ij
t t t
2

2 3 4
B, =0.71344+0.00525€xp|:25.42681 - —82.30859[3j +39.63312( j +16.09569[3) :l
C C C

2 3 4
B, =0.02433-0.08062 exp{24.4561 9 — |- 103.67649(2j + 158.27997(3j - 87.15246(?—) }
c c c

2 3 4
B, =0.12875+0.46420exp{14.79057 g —66.68409(3j +1o3.18837(3j —58.96618(3) }
C C C

;

4
a

2 3
B; =1.00553 - 8.68986[ j + 35.59049(3] - 85.96909(3) +1 18.96622(2j - 84.66299(
¢ C ¢

o |

C

6
+ 23.75335(%
Cc

WEIGHT FUNCTION (Figure 40) - Surface Point B:

1
2 X 2 X 1 X 2
mB(X,a)Z \/; 1+ MIB(—;J +M2B(;—) +M38(;j

PARAMETERS:

3

My =73%(2Fo _5F1)_8

M, =ﬂ(3F1 ~F,)+15

JQ

M, =3—g(31~“0 ~10F,)-8

o

where:
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2 5
E,=C, +c( )+c (J +C3(%j +c4(3J
a a } a ! a °
CO=1.40290{1—exp{—6.93070(-—)+21 48633( ) —36.14294(—) +28.68609(—j —8.80402(—) }}
C C C C
2 3 4
C, = —15.12461(3][1 - 1.17520(3)} exp|:— 3.64659(3) - 5.78270@) + 13.55459(9} - 6.78266(3) }
C C C Cc C [o}
a a ’ a )
c, =1. 11589{1 expl: 060488(—] 942291( ] +17.10918(—j —7.51091(—”
¢ C C

— B 2
) exp —10.21823[?—} + 8.20568[3) - 7.52675(
L C C

o |®

o]

1 B 2 3 4
) exp —9.87203(3)+19.30584(3j —26.66380(3j +14.35426(3) }
C C C C

C; =55 90204( Jl:l +2. 086702(

o |®
L

o

C, = —16.95222[3)[1 - 0.88925(
C

and

2
F =D +D( )+D (tj
a a 2 a ’ a
D, =0.20478{1—exp{—l1.38873(—)+28.07640(—) —30.62707(——) +9. 86369(—} ]}
[} C C C
_ N
D, :—9.73349( ) 1-1.09108 — } —4.22628( )—4.99914( ] 4.84826(—) }
C
: 3
D, =14.67302( ) 1- 090366 — } —5.27930( j+1.71158( J +1.33890( ) }

RANGE OF APPLICATION: R/R,=2.0,0=a/t=1.0,a/c=0and 0.2 =a/c=1.0
ACCURACY: Better than 3% when compared to the FEM data.
REFERENCES:

m

) +10. 82767(

o
ols»
olsn

O

m
o |®
olm
O |®

O
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- weight function:

Kiciak A.. Glinka G., Burns D. J., 1996, “Weight Functions and Stress Intensity Factors
for Longitudinal Semielliptical Cracks in Thick-wall Cylinders,” J. Press. Vess. Technol.,
ASME (to be published)

- reference data:

Mettu S. R.. Rajul. S.. Forman R. G., 1988, “Stress Intensity Factors for Part-Through
Surface Cracks in Hollow Cylinders,” NASA Technical Report, No. JSC 25685 LESC
30124.

Andrasic C. P., Parker A. P., 1984, “Dimensionless Stress Intensity Factors for Cracked
Thick Cylinder Under Polynomial Crack Face Loading,” Engng. Fract. Mech., Vol. 19,
1984, pp. 187-193.

Murakami Y.. et al.. 1986, Stress Intensity Factor Handbook, Vol. 2, Pergamon Press, pp.
309-317.

&}
Ry

Figure 40. External Axial Semielliptical Surface Crack in a Thick Cylinder
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External Axial Semielliptical Surface Crack in a Thick Cylinder (R,/R;=1.5)

WEIGHT FUNCTION (Figure 40) - Deepest Point A:

1

- 1
X X X
m,(x,a)= ————=—|1+M —_ +M 1-=1 +M,, | 1-—

PARAMETERS:
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1.65
Q=1+1.464[3j and t=R_-R,
Cc

2 4
a a a
YO = AO + A](?) A2(¥j + A3('t-j

B 2 3
—0.85208 + 0.14072(3) - 1.88533(3] +2.3 8695(3)
C C

C

a 4

- 0.92014(—]
c

A, =0.69716 +exp

2 37
~1.89775+21 .36041[3) - 84.13521(3) + 142.22714(%
C C

A, = 0.83400 — exp ¢

4 5
- 109.84164(3) + 32.02799(3)
C C

i

2 3
0.38467 + 3.4641 1(3) - 3.41241(3j + 28.40776(Ej
C C C

A, =0.25833 +exp

4
+ 23.50662(%
C

2 3
0.18341+ 12.66325(3) - 148.59759(3) +400.3 1551(3)
C C C

Ay =-0.024225 + exp

S

4
—419.88103(ij +150.43104(3]
c C
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and

2 4
Y, =B, + Bl(—?—) + Bz(l“t-) + B{%j

2 3
—0.78477 +0.07367 (ij —0.19984 (ij —0.04996 (ij
C C

B, = 0.22856 + exp ©

4
~0.25050 (3)
L ¢ |
" 2 3
~227787 + 20.51173(%)— 84.19018(%) +154.08510(52—)
4 5
~132.35299 (3) +43.43167 (3)
. C c -
2 3
—1.11085 +13.46249 (3) —55.49509 (%j +74.92487 (%j

c
a 4
—37.080007 (—j
c

B, =0.43259 —exp

B, =0.14247 +exp

2 3
—0.44818 — 0.17795(3) —53.30479 (3) + 25.51119(%
C

C C
B, =-0.02704 + exp .
+24.67589 (ij

C

WEIGHT FUNCTION (Figure 40) - Surface Point B:

1 1 3
2 X \2 X X \2
mB(X,a)=J—n—;— 1+MiB(;) +M2B(;) +M3B(;)
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PARAMETERS:

M = \/_(21: —5F,)-8

157
Q

M., = % (3, —10F, )-8

JQ

where:

M,, = ~=(3F, -F,)+15

1.65
Q=1+1.464(3J and t=R,-R,
C

ro=circf2)rof2) vof2)

C, = 0.69519{1 + 0.31674(3) + 0.34206(
c

<HE

2 5 ,
j —exp[— 29.87363(% + 139.14830(3) _332_37581(3j }}
C C c

2 3 47
C, = —(3)[55.208999 - 68.89759(3]} exp[— 16.4711 1(3) + 38.49788(3) - 55.27126(3) +27.253 96(3j }
c c o - . -

2 5 5
C,= 2-70539{1 - 1.50789(3) + 0.72855(3) - expl:— 23.29526(3) + 84.84981(3) - 144.62398(% J}
C C c c c
a a a 2 a a 2 a 3
C, = (_){27.52544 - 14.91620(——) - 12.89888(—) }exp':— 17.213 10(—] + 21.22175(~) - 7.53042[—) }
c c c . . .

and
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p-0,0(2)en (] +n,2]

D, = 0.09646{1 + 1.51333(% -1 .27723(
C

O |®

2 3
) + 0.79576(3j - exp{—— 27.55715(3)}}
C C
a a a aY a)’
D, = —0.66304[—){1 - exp[—- | 1.75502[-)}}{1 - 2.30088[—) + 0.66328(—J + 0.58371(— ) }
C C C C C
a a a 2
D, = 2.07021{1 - exp[— 3.5731 1(—”}[1 ~23 1235(-) + 1.38520(—) }
C C C
a a 2 a 3 a 025
D, = {0.23183 - 2.02421(-) + 4.64517(—) ~2.861 145[-) Hl - exp[— 52.19501(-) }}
C C C C

RANGE OF APPLICATION: R/R;=1.5,0=a/t=1.0,a/c=0and 0.2 =a/c= 1.0
ACCURACY: Better than 3% when compared to the FEM data.

REFERENCES:

- weight function:
Kiciak A.. Glinka G.. Burns D. J., 1996, University of Waterloo, to be published.

- reference data:
Mettu S. R.. Raju I. S., Forman R. G., 1988 “Stress Intensity Factors for Part-Through

Surface Cracks in Hollow Cylinders,” NASA Technical Report, No. JSC 25685 LESC
30124.

Andrasic C. P., Parker A. P., 1984, “Dimensionless Stress Intensity Factors for Cracked
Thick Cylinder Under Polynomial Crack Face Loading,” Engng. Fract. Mech., Vol. 19,

1984, pp. 187-193.

Murakami Y.. et al.. 1986, Stress Intensity Factor Handbook, Vol. 2, Pergamon Press, pp.
309-317.
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External Axial Semielliptical Surface Crack in a Thick Cylinder (R, /R;=1.25)

WEIGHT FUNCTION (Figure 40) - Deepest Point A:

-
ol

1
2 X )2 X : X \2
= |1+ M, | 1-=| +M,,|1-—| +M;,|1-=
m, (x,2) (——2n(a_x) + IA( a] + ZA( a) + SA( aj

PARAMETERS:

2%

2Q

M,, =3

M, = (_Yo+3Y1)_"'

M,, = 6m

J2Q

where:

1.65
Q=1+1.464(ij and t=R,-R,
C

nenea(D)enf2) af2)

2
A, =0.94235+ exp{ 1.68499 —8. 56013( j+ 23 08395( ] —26.59266( j +10. 62456(
c

o|s»

J
J

2
A, =-0.57088 + exp{1.58221 - 3.16636(3j - 4.515307(3) +11 .48057(3) - 5.95069(3) }
C C C C

2
A, =—0.38656+ exp{— 0.82502 + 4.66494(3) - 12.06481(3) +11 .96283( —4.23850
C C

olm
o|s=>

~15.94324 +1 12.58315(3) - 340.20961(3] +497.993 ss(ij
A, =0.19498 — exp © © ©

4 5
- 354.74017(3) + 98.71664(3)
C C

and
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2 3 4
Y, =B0+B1[%J+B2(f:—] +B3Gj +B4(%j

3

2
~1.71519 - 2.14909(3) + 7.58393[% - 10.00652(?—]
(¢ C v

4
+4.71914(3)
C

B, = 050249 + exp

3

2
0.31448 + 0.59120(?-) - 2.21570(% + 3.08396(9—j
C C C

4
- 1.37007(3)
L C

B 2
B, = 0.04652 + exp| 0.04497 - 3.84029(% -1 .32259(3)
L C C

B, =1.53122 -exp

2 3
~0.55548 + 0.88270(9-) - 13.45912(3) - 2.45236(3)
C C

B, = 0.02569 + exp .
+ 8.50684(%
C

2 3
~2.10419 + 7.85207(3) - 33.70843@) + 25.85419(3)
B, = 0.01828 — exp ¢ ¢ ¢

4
- 4.64059(ij
C

WEIGHT FUNCTION (Figure 40) - Surface Point B:

1 3

2 X \2 x\' X )2
mB(X,a)=—\/—;—}-(— 1+M1B(-a—) +M23(;‘j +M3B(;J
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PARAMETERS:

3n
M,, =— (2F, )-8
\/—6 0
M23=1ﬁ(3F1—F0)+15
JQ
3n
M3B=\/—6—(3F ~10F,)-8
where

2 4
a a a
FO = CO + Cl(?) + C2 (?] + C3(¥)
a a 2
C, = 0.47251{1 + 1.58454(~—) -0.1 9842(—-) — exp[—— 14.02505(ij}}
C C C
a a 2 a
C = —-0.22958{1 —2.7913 1(—-) + 1.47068(—} - exp[— 14.1 1736(—):”
C C C

I 2 3
C,=1 80687{1 1 27898( J+O 55332( —exp —11.39742(3j+34.86421(E —78.88988@) }}
C C C

olm

J .
-

C;=0. 24024{1 2. 08060( )+1 01701(

olm

and
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4
F, =D, +D( j+D( ) +D3(:a_)
t t
D, = 0.12603{1 +0.541 16(3) - exp|:— 3. 19737(%}}
C C

2 2
D, = —0.15562{1 - 2.30358(% +1.03 870(9-) - exp[- 5.24795(% + 2.35842(3) ﬂ}
Cc C C C
a a a
D, =2.1 7158{1 - exp[— 1.21697(—)}}[1 - 1.89058(—) + 0.96829(—) }
Cc C

1.08880 — 12.47981(5) + 46.80652[ J =T7. 95158( )

a c
D,=|—

¢ a\’ a)’
+60.62440| — | —18.09600| —
| ¢ c

RANGE OF APPLICATION: R/R,=1.25,0=2a/t=1.0,a/c=0and 0.2 =a/c=1.0
ACCURACY: Better than 3% when compared to the FEM data.
REFERENCES:

- weight function:
Kiciak A.. Glinka G.. Burns D. I., 1996, University of Waterloo, to be published.

- reference data:
Mettu S. R.. Raju L. S.. Forman R. G., 1988, “Stress Intensity Factors for Part-Through
Surface Cracks in Hollow Cylinders,” NASA Technical Report, No. JSC 25685 LESC

30124.

Andrasic C. P.. Parker A. P., 1984, “Dimensionless Stress Intensity Factors for Cracked
Thick Cylinder Under Polynomial Crack Face Loading,” Engng. Fract. Mech., Vol. 19,
1984, pp. 187-193.

Murakami Y.. et al.. 1986, Stress Intensity Factor Handbook, Vol. 2, Pergamon Press,
pp. 309-317.
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External Axial Semielliptical Surface Crack in a Thick Cylinder (R /R;=1.1)

WEIGHT FUNCTION (Figure 40) - Deepest Point A:

LSRNV

1
2 x )2 x ) xj
m,(x,a)s=————|1+M,,|l——| +M,, |1-=| +M,,|1——
A( ) '2n(a-—x) IA[ aj ZA( a) 3A[ a

PARAMETERS:

2 24
M]A =TZ(2Y0 _3Y1)—?
M2A =3
M. = 6n

3A -\/2_Q—

where:

8
Y, —Y0)+-5-

1.65
Q=l+1.464(3) and t=R_-R,
C

2 4
Y, = A, +A, G-) +A2GJ

2
A, = 1.1492—-0.4322[3j+0.2984[3)
C C

2
A, = 4.00—8.98(3)+5.29(3j
C C

1

a 1.094
0.066 + (—J
Cc

2
A, = —7.44+14.559[3)—8.3OS[EJ +
C C

and
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2 4
Y, =B, + BIG) + BZGJ

o =0.4840-0. 5211( j+0 788(

OIN

oty
J

olm

B, =2.4478 - 50937[ ]4—2 850

N

B2=—5.69+9.653[3J—5.062(—) + L
c c a)’
0.097+(—)

Cc

WEIGHT FUNCTION (Figure 40) - Surface Point B:
1 | 3
X X |2
mglX,a 1+M + Mgl — | + M| —
B( ) \/— IB( ) ZB[a) 3B(aj
PARAMETERS:

—— (5F, —3F, )-8

MIB \/"

3n
Q
M, = 1/5%(21? —3F,)+15

M,, = %(101% ~7F,)-8
where:
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1.65
Q=1+1.464(3j and t=R,-R,
C

SO

2
C, =1.2964 - 0.2532(% + 0.0895(3)
C Cc

2 3 4 5
o} =—0.1110+25.953(5)—115.107(ij +210.832(ij -177.848(3) +56.833 (i)
C

C Cc C c

2
C, =1.405- 3.746(3] + 2.262(?-)
C C

and
a 2 a ¢ a
F1={DO+D1(—j +D2(—) N:
t t Cc
a a ?
D, =1.2531 —0.7814(—J + 0.4668(—)
C C
a a 2 a } a ¢ a 3
D, =0.2128+14.4065(-—j—67.574(—) +129.93(—j —115.252(—) +38.6732(—)
C C C C C

2
D, =0.7704—1 .3817[3] + 0.58529(%
C C

RANGE OF APPLICATION: R/R;=1.1,0=a/t=1.0,and 0 =a/c=1.0
ACCURACY: Better than 5% when compared to the FEM data.
REFERENCES:

- weight function:
Wang X. J.. Lambert S. B., 1996, “Stress Intensity Factors and Weight Functions for
Longitudinal Semielliptical Surface Cracks in Thin Pipes,” Int. J Pres.Ves. & Piping,
Vol. 65, pp 75-87.

- reference data:
Raju L. S.. Newman J. C., 1982, “Stress Intensity Factors for Internal and External
Surface Cracks in Cylindrical Vessels,” J. Press. Ves. Technol., Vol. 104, pp. 293-298.
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Andrasic C. P.. Parker A. P., 1984, “Dimensionless Stress Intensity Factors for Cracked
Thick Cylinder Under Polynomial Crack Face Loading,” Engng. Fract. Mech., Vol. 19,
1984, pp. 187-193.
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